
Rulbus Device Library for Microsoft Windows Reference Manual
0.2.1 (stable)

Generated by Doxygen 1.4.0

Wed Apr 6 08:59:18 2005

Contents

1 Rulbus Device Library for Microsoft Windows Main Page 1

2 Rulbus Device Library for Microsoft Windows Module Documentation 3

2.1 User Manual. 3

2.2 Rulbus – RijksUniversiteit Leiden BUS. 4

2.3 Defining Interface and Modules. 6

2.4 Creating a Program. 9

2.5 Threads and the Rulbus Device Library. 12

2.6 Compilers and the Rulbus Device Library. 15

2.7 Reference Manual. .17

2.8 Rulbus DLL Interface. 19

2.9 Generic Rulbus Device. 24

2.10 RB8506 Parallel Interface. 26

2.11 RB8506 SIFU. .30

2.12 RB8509 12-bit ADC . 33

2.13 RB8510 12-bit DAC . 36

2.14 RB8513 Timebase. .38

2.15 RB8514 Time Delay . 40

2.16 RB8515 Clock for Time Delay. 43

2.17 RB8905 12-bit ADC . 45

2.18 RB9005 Instrumentation Amplifier. 49

2.19 RB9603 Monochromator Controller. 52

2.20 PIA Motorola Peripheral Interface Adapter MC6821. 55

2.21 VIA Rockwell Versatile Interface Adapater R6522. 57

2.22 Developer Manual. .59

2.23 How to Develop a Rulbus Device Driver. 60

2.24 Rulbus DLL Implementation. 62

3 Rulbus Device Library for Microsoft Windows Directory Documentation 63

ii CONTENTS

3.1 H:/myprojects/bf/prj/rulbus-rdl/librdl/src/ Directory Reference. 63

4 Rulbus Device Library for Microsoft Windows Example Documentation 65

4.1 dac.cpp .65

4.2 error.cpp. .67

4.3 pattern.cpp .68

4.4 pport.cpp .69

4.5 rulbus.conf .72

4.6 run-daccs.cmd. .75

4.7 run-daccs2.cmd. .80

5 Rulbus Device Library for Microsoft Windows Page Documentation 85

5.1 Acknowledgements. 85

5.2 References. .86

5.3 Todo List .87

Index 88

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

Chapter 1

Rulbus Device Library for Microsoft
Windows Main Page

The Rulbus Device Library is a Microsoft Windows 95/98/NT/2000/XP dynamic-link library (rulbus.dll)
with functions to use the most popular Rulbus modules. It supports the ISA Rulbus Interface as well as the
EPP Rulbus Interface.

This manual contains the following sections:

• User Manual

• Reference Manual

• Developer Manual

TheUser Manualtells you more about Rulbus and Rulbus Interfaces and it describes how to use this library.

TheReference Manualdescribes the functions available for the various Rulbus modules supported. To dis-
cover how to use a certain Rulbus module, look up its documentation page by Rulbus number in the table of
Contents, Chapter 2, for exampleRB8510 12-bit DACfor the dual 12-bit DAC and read the documentation
for the functions available.

To learn about the implementation of the Rulbus Device Library, explore theDeveloper Manual. It de-
scribes the implementation of the Rulbus modules and of the Rulbus interfaces.

RDL License

Copyright ©2003-2004, by Leiden University.

RDL is written by Martin J. Moene<m.j.moene@eld.physics.LeidenUniv.nl >

Permission to use, copy, modify, and distribute this software and its documentation under the terms of
the GNU General Public License is hereby granted. No representations are made about the suitability of
this software for any purpose. It is provided "as is" without express or implied warranty. See theGNU
General Public License for more details.

Web page:http://www.eld.leidenuniv.nl/ ∼moene/software/rdl/

mailto:m.j.moene@eld.physics.LeidenUniv.nl
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.eld.leidenuniv.nl/~moene/software/rdl/

2 Rulbus Device Library for Microsoft Windows Main Page

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

Chapter 2

Rulbus Device Library for Microsoft
Windows Module Documentation

2.1 User Manual

2.1.1 Detailed Description

The Rulbus Device Library is a Microsoft Windows 95/98/NT/2000/XP dynamic-link library (rulbus.dll)
with functions to use the most popular Rulbus modules. It supports the ISA Rulbus Interface as well as the
EPP Rulbus Interface.

Modules

• Rulbus – RijksUniversiteit Leiden BUS

computer-indepedent I/O bus – modules – racks – computer–Rulbus interfaces.

• Defining Interface and Modules

computer–Rulbus interface – module configuration file – setrulbus utility.

• Creating a Program

structure – compilation – error handling – example.

• Threads and the Rulbus Device Library

multithreading – example.

• Compilers and the Rulbus Device Library

Borland C++ – cdecl calling convention – compiling programs.

4 Rulbus Device Library for Microsoft Windows Module Documentation

2.2 Rulbus – RijksUniversiteit Leiden BUS

I/O bus for peripherals The Rulbus is a simple input-output bus for peripherals, like an analog to digital
converter. It is designed such that peripheral cards have a simple interface to the bus. Also, it is designed
such that many microprocessor types can be connected to the Rulbus via a simpleRulbus Interface. Thus
a single version of a peripheral card can be used with various types of microprocessors and microcomputer
systems. For more information, see[rulbus].

Rulbus Modules or Cards There are circa 100 different Rulbus modules. Some of the most popular are:

• parallel interface module for digital input-output, RB8506 with PIA or VIA

• 12-bit analog to digital converter module, RB8509

• 12-bit digital to analog converter module, RB8510

• delay module, RB8514

• clock module, RB8515

Several properties of a Rulbus module are:

• the printed-circuit board has Euro-card format

• the card has a 50-pin Rulbus connector on its rear side that connects to the Rulbus flatcable

• most cards have input-output connectors on the front side

• the card is enclosed in a metal case

Rulbus Racks Based on an application’s measurement and control requirements, various Rulbus modules
are collected in one or more 14-inch racks. A rack may contain up to 12 single-width (35 mm) modules.

Figure 2.1: A Rulbus rack (half-width)

Several racks may be chained and then be connected to a computer via a computer–Rulbus interface.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.2 Rulbus – RijksUniversiteit Leiden BUS 5

The bus-part of the Rulbus The Rulbus as abusis a collection of several lines that make communication
between a computer and the various Rulbus cards possible.

The bus consists of the following lines:

• 8 lines to carry data (one data byte at a time)

• 8 lines to address a data byte

• 5 lines for control (enable, read-write, reset, interrupt and a 4 MHz clock signal)

• many lines for+5 Volt, +15 Volt and−15 Volt power supply

The Rulbus address space is thus 256 bytes (28). Two of these addresses are reserved:

• 0x00 or 0 is reserved to extend the range of available addresses (see further)

• 0xFF or 255 is reserved for the ‘bus inactive’ state.

There are Rulbus modules that only use one byte of the Rulbus address space, but there are also modules
that occupy 32 bytes of the address space of 254 bytes. The address range a module uses, is determined
when the module is made: it is programmed in the card’s address GAL or PAL (programmable array logic).

If many modules are used together it may be difficult to assign all modules a proper address range and
prevent address conflicts.

In sectionDefining the Moduleson page??we will see how the Rulbus addressing scheme is extended by
giving each rack its own address (secondary address).

In sectionDefining the Moduleswe will also see how the address and several other properties of each
module to use can be specified in aRulbus configuration file.

Rulbus Interfaces Nowadays, only two Rulbus Interfaces that connect to a PC are of interest:

• theISA Rulbus Interface

• theEPP Rulbus Interface

The ISA Rulbus Interface is designed for theIndustry Standard Architecture(ISA) slots of a PC. New PCs
may not include ISA slots anymore, so a new Rulbus Interface was developed: the EPP Rulbus Interface.

The EPP Rulbus Interface is connnected to the parallel port of a computer (PC). For the interface to work,
the parallel port must be configured to work inEnhanced Printer Portmode in the PC’s BIOS, hence the
EPP [IEEE1284].

The Rulbus Device Library supports both Rulbus Interfaces. At default the library assumes that the EPP
Rulbus Interface is being used with the parallel port at address 0x378. If this assumption is not valid,
the library must be informed what the proper interface type and address are. To this end theRULBUS
environment variable can be defined. See sectionDefining the Interface.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

6 Rulbus Device Library for Microsoft Windows Module Documentation

2.3 Defining Interface and Modules

Defining the Interface The Rulbus Device Library supports the ISA Rulbus Interface as well as the
EPP Rulbus Interface. At default the library assumes that the EPP Rulbus Interface is being used with the
parallel port at address 0x378. If this assumption is not valid, the library must be informed what the proper
interface type and address are. To this end theRULBUSenvironment variable can be defined as follows,
here shown as shell commands:

• set RULBUS=isa,0x200

• set RULBUS=epp,0x278

You can add;nocheck to disable checking if the Rulbus Interface is present (EPP only). See alsoSetrul-
bus Utility.

Rememberto configure the PC’s parallel port to work in Enhanced Printer Port mode in the PC’s BIOS, if
you use the EPP Rulbus Interface.

Defining the Modules In a program, software objects represent the physical Rulbus modules. These
software objects are created from a Rulbus configuration file. This happens when the program references
rulbus.dll for the first time and the DLL is loaded by the operating system.

Here is a small Rulbus device configuration file.

rulbus-small.conf - example rulbus device configuration file.

rack "top"
{

address = 0

rb8509_adc12 "adc"
rb8510_dac12 "dac-ch0" { address = 0xD0 }
rb8510_dac12 "dac-ch1" { address = 0xD2; bipolar = false; volt_per_bit = 1.25m }

}

rack "bottom"
{

address = 1

// still empty
}

See section??on page?? for a longer configuration file.

The configuration file defines racks that contain modules (cards). Besides card declarations, a rack decla-
ration usually contains an address specification (Seesecondary address).

Card Declarations The card declarations specify the type of the card and the name by which it is refer-
enced from the program. All card types can specify the address property and several card types can specify
other properties, like bipolar for card type rb8510_dac12. The available properties and their default values
are given in the sectionDefault configurationin the reference manual for the various card types.

Secondary Address When more than one rack is used, each rack must have a unique address. The
address of a rack is defined at its rear side via a 4-bit DIP-switch, so that rack addresses fall in the range
0–15.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.3 Defining Interface and Modules 7

Address 15 has a special meaning: the rack is always selected or active. In this case it must be the only
rack connected to the computer–Rulbus interface.

If a rack has an address in the range 0–14, the rack must be specifically selected by a program before the
cards it contains can be accessed. Note that the Rulbus Device Library takes care of this.

So with rack addressing, the range of available addresses is extended to 15 times 254, or 3810.

Figure 2.2: Secondary address selector

The figure above shows a rack with secondary address 3: binary 0011,0× 23 + 0× 22 + 1× 21 + 1× 20.

Note that the Rulbus Interface cannot be specified in the Rulbus device configuration file. The rationale
behind this is, that the Rulbus Interface is related to the computer, whereas the items in the Rulbus device
configuration file are related to the application. When a PC is replaced by another one, the application
and the Rulbus device configuration file should move to the new computer, but not the Rulbus Interface
specification.

Which Configuration File The path of the configuration file to read is determined as follows:

1. contents of environment variableRULBUS_CONFIG_FILE, or

2. file .\rulbus.conf (current directory), or

3. file C:\etc\rulbus.conf

You can set the environment variableRULBUS_CONFIG_FILEin a command shell temporarily as fol-
lows:

• set RULBUS_CONFIG_FILE=M: \myexperiment \etc \rulbus.conf

Setrulbus Utility For Windows 95 types of operating system (Windows 95/98/me) theRULBUSand
RULBUS_CONFIG_FILEenvironment variables must be recorded inautoexec.bat by editing it. For
Windows NT types of operating system (Windows NT/2000/XP) they must be recorded in the registry, for
example via System Properties, Environment.

To make it easy to select the proper Rulbus Interface and to define the path to the Rulbus configuration file
on either operating system type, a small GUI program has been made:setrulbus.exe .

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

8 Rulbus Device Library for Microsoft Windows Module Documentation

Figure 2.3: Set Rulbus Environment (setrulbus.exe)

Open setrulbus via Start | Rulbus Device Library | Tools | Set Rulbus
Environment . Program setrulbus is located in the programs subdirectory of the Rulbus Device
Library installation directory.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.4 Creating a Program 9

2.4 Creating a Program

Writing a Program The Rulbus Device Library consists of several functions for each Rulbus module.
These functions are published in the C/C++ header filerulbus.h . You normally need to only call func-
tions for the Rulbus modules you want to use (but also seeHandling Errors).

Rulbus modules are used according to the pattern: open – use – close, for example:

#include "rulbus.h"

int main()
{

int32 handle;

rb8510_dac12_open (&handle, "dac-ch0"); // open device
rb8510_dac12_setVoltage(handle, ...); // use it
... // even more
rb8510_dac12_close (handle); // close device

return 0;
}

The name used to open the DAC,"dac-ch0" , corresponds to a name in the Rulbus device configuration
file. See sectionDefining the Moduleson page?? . Note that the types for parameters that may be
modified (pointers) include a size specification in function calls to the library (e.g.int32 handle).
Other parameters may be specified using the normal types.

Besides the functions related to specific Rulbus modules, there are library-related functions and general
Rulbus device functions. Function names appear in the following forms:

• rdl_ ... – library-related functions, likerdl_getLastError()

• rb yydd _... – specific Rulbus module related functions, likerb8510_dac12_open()

• RulbusDevice_ ... – general Rulbus device functions, likeRulbusDevice_print()

Compiling the Program In the following command, {include-path} specifies the directory with
rulbus.h andrulbus-types.h and {library-path} specifies the directory withrulbus-omf.lib .

To create the program for use with the Rulbus Device Library DLL, compile as follows:

C:\>bcc32 -I(include-path) -L{library-path} example.cpp rulbus-omf.lib

With Borland C++ 5.6 you can also create a standalone program. See Compiling Programs, sectionBorland
C++ for more information.

Handling Errors All interface functions in the Rulbus Device Library use the same error handling pat-
tern: they return the following status values:

• 0 the function call was successful

• 1 an error occurred

Notable exceptions to this rule are functionsRulbusDevice_getByte(), RulbusDevice_putByte()andDll-
Main().

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

10 Rulbus Device Library for Microsoft Windows Module Documentation

Properly written programs should always check the function return value to see if the function call was
successful and should act accordingly. When an error occurred, a string explaining the error condition may
be obtained with functionrdl_getLastError().

#include <stdio.h> // for stderr, fprintf()
#include "rulbus.h" // for rb8510_dac12_open() etc.

static int error();

int main()
{

int32 handle;

if (rb8510_dac12_open(&handle, ...))
return error();

// ...

return 0;
}

static int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
fprintf(stderr, "%s\n", msg);

return 1;
}

Complete Example The following example program opens a DAC, generates a staircase voltage and
closes the DAC again.

/ *
* dac.cpp - generate a staircase voltage.

*
* compile: bcc32 dac.cpp rulbus.lib

* /

#include <stdio.h> // for printf() etc.
#include <stdlib.h> // for strtol()
#include <windows.h> // for Sleep()
#include "rulbus.h" // rulbus interface

static int usage(); // print program usage, return EXIT_FAILURE
static int error(); // print error, return EXIT_FAILURE

/ *
* main - handle commandline arguments and generate staircase voltage on DAC.

* /

int main(int argc, char * argv[])
{

/ *
* handle commandline arguments:

* /

if (argc < 2)
return usage();

/ *
* the name on the commandline must correspond to the name of a 12-bit

* DAC in the Rulbus device configuration file, typically rulbus.conf.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.4 Creating a Program 11

* /

char * name = argv[1];

/ *
* open the DAC:

* /

int32 handle;
if (rb8510_dac12_open(&handle, name))

return error();

/ *
* generate 11 one volt steps, one per second:

*
* Note that the last step generates a RulbusRangeError, because the

* voltage is outside [-10.235 .. +10.24 V].

* /

for (int i = 0; i <= 11; i++)
{

fprintf(stdout, "[%d]", i);

if (rb8510_dac12_setVoltage(handle, i))
return error();

Sleep(1000); // delay one second
}

/ *
* close the DAC:

* /

if (rb8510_dac12_close(handle))
return error();

return EXIT_SUCCESS;
}

/ *
* usage - print program usage.

* /

static int usage()
{

fprintf(stdout, "Usage: dac device-name\n");
return EXIT_FAILURE;

}

/ *
* error - retrieve and print Rulbus error.

* /

static int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
fprintf(stdout, "%s\n", msg);

return EXIT_FAILURE;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

12 Rulbus Device Library for Microsoft Windows Module Documentation

2.5 Threads and the Rulbus Device Library

Multithreading Because the Rulbus Device Library is used on a multitasking–multithreading operating
system, attention must be given to the effects this may have. For example, it should not be possible that in
one thread a Rulbus device just selected its rack, followed by a second device in another thread setting one
of its registers, assuming thatits rack still is selected.

The Rulbus Device Library enforces the following:

• access to all Rulbus devices is serialized so that only one thread can alter a device at a time and only
one device can access the Rulbus at a time

• selecting a rack and reading a byte from or writing a byte to the Rulbus is also serialized

Serialized means that an operation is completed before the next operation will be allowed to commence.
To this end semaphores are used.

Because of the way DLLs use memory, the following applies:

• Rulbus devices can be shared among different threads of the same process (seeclient-server thread
example)

• Rulbus devices cannot be shared among different processes, although different Rulbus devices can
be used from different processes (seeclient-server process example)

Example The following program example shows the use of three threads, two of which control their own
DAC. One thread generates a square wave voltage, the other thread generates a sawtooth voltage. Error
handling has been omitted for clarity.

/ *
* threads.cpp - use Rulbus Device Library from three threads.

*
* compile: bcc32 threads.cpp rulbus.lib

* /

#include <conio.h> // for kbhit()
#include <stdio.h> // for fprintf(), sscanf()
#include <string.h> // for stricmp()
#include <windows.h> // for DWORD HANDLE, Sleep()

#include "rulbus.h" // for rb8510_dac12_open() etc.

const char * title = "Threads 1.0 use Rulbus DLL from three threads.\n";

enum { E_OK, E_OPT, E_ARG, }; // program return codes

static int threads ();
static HANDLE mkThread (const char * msg, DWORD WINAPI (* ThreadFunc)(LPVOID), int32 * pHandle);
static DWORD WINAPI SquareWave(LPVOID arg);
static DWORD WINAPI SawTooth (LPVOID arg);

/ *
* main - the program.

* /

int main(int argc, char * argv[])
{

fprintf(stdout, "%s\n", title);

return threads();
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.5 Threads and the Rulbus Device Library 13

/ *
* threads - create a separate thread for each of two DAC channels

* and generate a square wave and a sawtooth.

*
* 100% |-- -- --

* | | | | | |

* 50% | -- --

* | /| /| /| /| /

* 0% |/_|/_|/_|/_|/___

* /

static volatile int runthread = 1;

static int threads()
{

rdl_printRulbusInterface();

fprintf(stdout, "\nGenerating waveforms on DAC channels 0 & 1.\n");

/ *
* open two DACs:

* /

int32 dac0, dac1;

rb8510_dac12_open(&dac0, "dac-ch0");
rb8510_dac12_open(&dac1, "dac-ch1");

/ *
* create and resume threads:

* /

HANDLE thread0 = mkThread("DAC channel-0", SquareWave, &dac0);
HANDLE thread1 = mkThread("DAC channel-1", SawTooth , &dac1);

fprintf(stderr, "\n\nPress a key to stop...\n\n");

ResumeThread(thread0);
ResumeThread(thread1);

/ *
* wait for key pressed; eat character:

* /

while (!kbhit())
Sleep(10);

(void) getch();

/ *
* stop and remove threads and close DACs:

* /

runthread = 0; Sleep(10);

CloseHandle(thread0);
CloseHandle(thread1);

rb8510_dac12_close(dac1);
rb8510_dac12_close(dac0);

return E_OK;
}

/ *
* mkThread - create a thread.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

14 Rulbus Device Library for Microsoft Windows Module Documentation

* /

static HANDLE mkThread(const char * msg, DWORD WINAPI (* ThreadFunc)(LPVOID), int32 * pHandle)
{

fprintf(stdout, "\ncreating thread for %s", msg);

DWORD id;

return CreateThread(
NULL, // pointer to thread security attributes
0, // initial thread stack size, in bytes
ThreadFunc, // pointer to thread function
pHandle, // argument for new thread
CREATE_SUSPENDED, // creation flags
&id // pointer to returned thread identifier

);
}

/ *
* SquareWave - generate a square wave voltage.

* /

static DWORD WINAPI SquareWave(LPVOID arg)
{

int32 handle = * (int32 *) arg;

fprintf(stdout, "thread function: squarewave on "); RulbusDevice_print(handle);

while (runthread)
{

rb8510_dac12_setValue(handle, 2048); Sleep(50);
rb8510_dac12_setValue(handle, 4095); Sleep(50);

}

return 0;
}

/ *
* SawTooth - generate a sawtooth voltage.

* /

static DWORD WINAPI SawTooth(LPVOID arg)
{

int32 handle = * (int32 *) arg;

fprintf(stdout, "thread function: sawtooth on "); RulbusDevice_print(handle);

while (runthread)
{

for(int n = 0; n <= 2047; n = (n + 50) % 2048)
{

rb8510_dac12_setValue(handle, n); Sleep(1);
}

}

return 0;
}

/ *
* End of file

* /

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.6 Compilers and the Rulbus Device Library 15

2.6 Compilers and the Rulbus Device Library

This section describes some implementation details, that nonetheless may be important if you want to use
the library with another compiler than Borland C++.

Compiler The Rulbus Device Library has been developed with Borland C++ 5.6.

Some reasons for this are:

• it is a 32-bit Windows native compiler that supports the creation of DLLs well

• it supports standard C++ exception handling

There are at least two important aspects to this choice:

1. the library uses C++ exception handling internally

GNU C++ does not support the C++ exception handling as specified in the C++ standard, so that it
cannot be used to compile the library.

2. therulbus.lib import library is in OMF format

Borland C++ produces (import) libraries in OMF format, whereas GNU C and Visual C++ use
(import) libraries in COFF format. There is no simple tool to convert an OMF import library to
COFF, but an import library in COFF format,rulbus-coff.lib , is provided to use the library
with a compiler other than Borland C++.

Calling convention The Rulbus Device Library uses thecdecl calling convention. It is specified via
theRDL_API preprocessor symbol in the function prototypes (rulbus.h) and definitions.

The calling convention is the arrangement of arguments for a procedure or function call. Different program-
ming languages may require arguments to be pushed onto a stack or entered in registers in left-to-right or
right-to-left order, and either the caller or the callee can be responsible for removing the arguments. The
calling convention also determines if a variable number of arguments is allowed[foldoc] .

Implicit linking a DLL requires an import library that is compatible with the compiler that is used to cre-
ate a program. It is especially difficult to create an import library for Microsoft Visual C++ when the
stdcall calling convention is used for the functions that are exported by the DLL created with Bor-
land C++. Harold Howe’sCreating DLLs in BCB that can be used from Visual C++
[BCBDEVDLL] shows how it can be done for both thecdecl and thestdcall calling convention.

Compiling programs

The following sections show how programs can be compiled using Borland C++, Microsoft Visual C++,
GNU C and LabWindows/CVI.

Here, {include-path} specifies the directory withrulbus.h andrulbus-types.h and {library-path}
specifies the directory withrulbus-omf.lib or with rulbus-coff.lib .

Borland C++ This compiler uses OMF library format.

bcc32 -I{include-path} -L{library-path} {program}.cpp rulbus-omf.lib

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=calling+convention&action=Search
http://www.bcbdev.com/ articles/bcbdll.htm

16 Rulbus Device Library for Microsoft Windows Module Documentation

With Borland C++ version 5.6 you also can create a program that can be used without the DLL (standalone
program). To this end the program is statically linked with the Rulbus Device Library, the Rulbus Device
Class Library and the Windows Utilities Library.

bcc32 -tWM -I(include-path) -L{library-path} {program}.cpp \
rulbus-omf-static.lib rulbusdcl-omf-static.lib winutils-omf-static.lib

Option-tWM specifies that the program must be linked with the multi-threaded C runtime library.

When you create a standalone program, you must inititialize the Rulbus Device Library yourself with
rdl_initialize().

Visual C++ This compiler uses COFF library format.

cl -I{include-path} {program}.cpp /link -Libpath:{library-path} rulbus-coff.lib

GNU C This compiler uses COFF library format.

g++ -I{include-path} -L{library-path} -o{program} {program}.cpp -lrulbus-coff

LabWindows/CVI This compiler uses OMF/COFF ?? library format.

Todo
find out how to use rulbus.dll with LabWindows/CVI

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.7 Reference Manual 17

2.7 Reference Manual

2.7.1 Detailed Description

The Rulbus Device Library contains two groups of functions:

• general library functions,Rulbus DLL Interface

• Rulbus module related functions, for exampleRB8510 12-bit DAC

When you want to use a specific Rulbus module, look up its documentation page by Rulbus number in
the table of Contents, Chapter 2, for exampleRB8510 12-bit DACfor the dual 12-bit DAC and read the
documentation for the functions available.

Modules

• Rulbus DLL Interface

Rulbus DLL interface.

• Generic Rulbus Device

generic rulbus device.

• RB8506 Parallel Interface

dual parallel interface (PIA/VIA).

• RB8506 SIFU

sense interrupt flag unit (BF).

• RB8509 12-bit ADC

8-channel 12-bit ADC.

• RB8510 12-bit DAC

dual 12-bit DAC.

• RB8513 Timebase

programmable timebase.

• RB8514 Time Delay

programmable time delay.

• RB8515 Clock for Time Delay

clock for delay module RB8514.

• RB8905 12-bit ADC

high speed 12-bit ADC (BF).

• RB9005 Instrumentation Amplifier

programmable instrumentation amplifier for RB8905 12-bit ADC (BF)

• RB9603 Monochromator Controller

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

18 Rulbus Device Library for Microsoft Windows Module Documentation

monochromator controller (BF).

• PIA Motorola Peripheral Interface Adapter MC6821

Motorola Peripheral Interface Adapter MC6821 (Pia).

• VIA Rockwell Versatile Interface Adapater R6522

Rockwell Versatile Interface Adapater R6522 (Via).

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.8 Rulbus DLL Interface 19

2.8 Rulbus DLL Interface

2.8.1 Detailed Description

The general interface of the Rulbus Device Library contains three groups of functions:

• report – functions to report on the Rulbus hardware interface used and on the currently open Rulbus
devices and to report on the last error that occurred in the library

• input/output– functions to enable reading from and writing to the Rulbus directly, via a generic
Rulbus device

• initialization – the DLL initialization functionsDllMain(), rdl_initialize() and rdl_finalize(). The
operating system calls DllMain() when it loads or unloads the DLL and DllMain in turns initializes
and cleans-up the library for you with rdl_initialize() and rdl_finalize().

For typical use of the Rulbus modules only functionrdl_getLastError()is of interest. Seedac.cpp. for an
example of its use.

For access to the Rulbus for unsupported operations on a module, or for unsupported modules, see section
Generic Rulbus Device.

Defines

• #defineEXPORT__declspec(dllimport)

import (export) functions from DLL

• #defineRDL_API __cdecl

calling convention

Typedefs

• typedef charint8

8-bit signed int

• typedef unsigned charuInt8

8-bit unsigned int

• typedefint8 char8

8-bit signed character

• typedefuInt8 uChar8

8-bit unsigned character

• typedefuInt8 uChar

8-bit unsigned character

• typedef short intint16

16-bit signed int

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

20 Rulbus Device Library for Microsoft Windows Module Documentation

• typedef unsigned short intuInt16

16-bit unsigned int

• typedef longint32

32-bit signed int

• typedef unsigned longuInt32

32-bit unsigned int

• typedef floatfloat32

32-bit float

• typedef doublefloat64

64-bit float

• typedefint32 bool32

boolean (32-bit)

• typedef char∗ Cstr

C-string.

• typedef const char∗ CCstr

const C-string

Functions

• EXPORTint32 RDL_API rdl_initialize ()

initialize Rulbus Device Library.

• EXPORTint32 RDL_API rdl_finalize()

finalize Rulbus Device Library.

• EXPORTint32 RDL_API rdl_printRulbusInterface()

report Rulbus Interface being used.

• EXPORTint32 RDL_API rdl_printRulbusDeviceList()

report all registered Rulbus devices.

• EXPORTint32 RDL_API rdl_getLastError(Cstrmsg,int32 maxlen)

format last error into message buffer.

• EXPORTint32 RDL_API RulbusDevice_open(int32 ∗pHandle,CCstrname)

open a generic Rulbus device.

• EXPORTint32 RDL_API RulbusDevice_close(int32 handle)

close a generic Rulbus device.

• EXPORTint32 RDL_API RulbusDevice_print(int32 handle)

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.8 Rulbus DLL Interface 21

report on specified Rulbus device.

• EXPORTint32 RDL_API RulbusDevice_putByte(int32 handle,int32 offset,int32 byte)

write a byte to a generic Rulbus device.

• EXPORTint32 RDL_API RulbusDevice_getByte(int32 handle,int32 offset)

read a byte from a generic Rulbus device.

• EXPORTint32 RDL_API RulbusDevice_getRack(int32 handle,int32 ∗pRack)

get Rulbus device’s rack.

• EXPORTint32 RDL_API RulbusDevice_getAddress(int32 handle,int32 ∗pAddress)

get Rulbus device’s address.

• BOOL EXPORT WINAPIDllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpv-
Reserved)

entry point into dynamic-link library.

2.8.2 Function Documentation

2.8.2.1 BOOL EXPORT WINAPI DllMain (HINSTANCE hinstDLL, DWORD fdwReason,
LPVOID lpvReserved)

DllMain() is called by the operating system (or a call to function LoadLibrary()), for example when a
process (program) wants to use the DLL. In this casefdwReason is DLL_PROCESS_ATTACH and
DllMain() calls rdl_initialize() to prepare the library for use.

When the DLL is no longer needed, the operating system calls DllMain() with afdwReason of DLL_-
PROCESS_DETACH and DllMain() in turn callsrdl_finalize()to clean-up the library.

DllMain() returns TRUE on success, FALSE on error (DLL_PROCESS_ATTACH).

2.8.2.2 EXPORT int32 RDL_API rdl_finalize ()

If the Rulbus Device Library is used as a dynamic-link library (DLL), the library is cleaned-up with this
function by DllMain() when the operating system unloads the DLL; you should not call rdl_finalize()
yourself.

If however you link the Rulbus Device Library directly to your application, you must call rdl_initialize()
before using any other function from the library and when done with the library, you should call rdl_-
finalize() to clean-up the library.

See alsordl_initialize().

2.8.2.3 EXPORT int32 RDL_API rdl_getLastError (Cstr msg, int32 maxlen)

rdl_getLastError() copies at mostmaxlen characters (including the terminating\0) of the last error mes-
sage into the buffer specified bymsg.

Only one message is retained for all threads using the Rulbus Device Library. If the error message for the
thread calling rdl_getLastError() is not available (anymore), the following message is returned:

[Rulbus: error message not available for this thread]

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

22 Rulbus Device Library for Microsoft Windows Module Documentation

Parameters:
msg the message buffer

maxlen the size of the message buffermsg

Returns:
0, 1 (Ok, error)
rdl_getLastError() returns 0 if the message could be copied, it returns 1 in the following situations:

• msg is NULL

• maxlen is zero or less

• the message was not available for this thread

Examples:
dac.cpp, error.cpp, run-daccs.cmd, andrun-daccs2.cmd.

2.8.2.4 EXPORT int32 RDL_API rdl_initialize ()

rdl_initialize() determines the Rulbus Interface to use and initializes the list to hold open Rulbus devices.
(SeeRulbus DLL Implementation, Create Rulbus interface .)

If the Rulbus Device Library is used as a dynamic-link library (DLL), the library is initialized with this
function byDllMain() when the operating system loads the DLL; you should not call rdl_initialize() your-
self.

If however you link the Rulbus Device Library directly to your application, you must call rdl_initialize()
before using any other function from the library. When done with the library, you should call rdl_finalize()
to clean-up the library.

See alsordl_finalize().

2.8.2.5 EXPORT int32 RDL_API rdl_printRulbusDeviceList ()

For each opened Rulbus device, rdl_printRulbusDeviceList() prints information for that device to standard
output.

2.8.2.6 EXPORT int32 RDL_API rdl_printRulbusInterface ()

rdl_printRulbusInterface() prints one of the following messages to standard output:

• EPP Rulbus Interface at [0x378], usingCanIOport I/O, or

• ISA Rulbus Interface at [0x200], usingCanIOport I/O

Examples:
run-daccs.cmd, andrun-daccs2.cmd.

2.8.2.7 EXPORT int32 RDL_API RulbusDevice_close (int32handle)

RulbusDevice_close()closes a generic Rulbus device that was opened withRulbusDevice_open(), or with
one of the rbyydd_..._open() functions.RulbusDevice_close()returns 0 on success, 1 on error.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.8 Rulbus DLL Interface 23

2.8.2.8 EXPORT int32 RDL_API RulbusDevice_getByte (int32handle, int32 offset)

RulbusDevice_getByte()returns the value read from the Rulbus at the addressoffset bytes from the
generic devices’ base address as specified withRulbusDevice_open(). On successRulbusDevice_getByte()
returns the byte read, otherwise it returns -1.

Returns:
0..255, -1 (byte read, error)

2.8.2.9 EXPORT int32 RDL_API RulbusDevice_open (int32∗ pHandle, CCstr name)

RulbusDevice_open()opens a generic Rulbus device with the specifiedname and passes back ahandle
to it on success.

The handle can be used in functionsRulbusDevice_putByte(), RulbusDevice_getByte()and Rulbus-
Device_close()to write to the Rulbus, read from it and close the generic Rulbus device again.

RulbusDevice_open()returns 0 on success, 1 on error.

Examples:
pattern.cpp.

2.8.2.10 EXPORT int32 RDL_API RulbusDevice_print (int32handle)

RulbusDevice_print()prints information for the device specified byhandle to standard output.handle
may be obtained withRulbusDevice_open()or one of the rbyydd_..._open() functions.

Examples:
run-daccs.cmd, andrun-daccs2.cmd.

2.8.2.11 EXPORT int32 RDL_API RulbusDevice_putByte (int32handle, int32 offset, int32 byte)

RulbusDevice_putByte()writesbyte to the Rulbus at the addressoffset bytes from the generic devices’
base address as specified withRulbusDevice_open(). On successRulbusDevice_putByte()returns the byte
written, otherwise it returns -1.

Returns:
0..255, -1 (byte written, error)

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

24 Rulbus Device Library for Microsoft Windows Module Documentation

2.9 Generic Rulbus Device

Purpose Provide an escape to access the Rulbus for non-supported operations or modules.

Description Sometimes you may want to use an operation on a Rulbus module that is not provided by
the modules’ interface in this library. Or you may want to use a Rulbus module that is not supported by
this library at all.

In these cases the required operations may be constructed with the functions for the Generic Rulbus Device
to open a device, read and write a byte and close a device (seeRulbus DLL Interface).

Configuration Not much is known of operations or modules that are not supported by this library.

Default configuration

rb_generic "mydevice"
{

address = 0 # must be zero
}

When the Rulbus configuration file is read, the device is unaffected.

Usage For a generic Rulbus device you can use the functions as described inRulbus DLL Interface

Here is a small snippet of code that shows how to access the Rulbus with the generic Rulbus interface
functions.

int32 handle;
int mybase = 0x12; // mydevice Rulbus base address
int myreg0 = 0; // e.g. register offset for LSB
int myreg1 = 1; // e.g. register offset for MSB
int myvalue = 0x1234; // value to write to mydevice

RulbusDevice_open (&handle, "mydevice");
RulbusDevice_putByte(handle, mybase + myreg0, myvalue % 256); // LSB
RulbusDevice_putByte(handle, mybase + myreg1, myvalue / 256); // MSB
RulbusDevice_close (handle);

Here is a small program to demonstrate how the generic Rulbus interface functions may be used to contin-
uously write a test pattern to a Rulbus address.

/ *
* pattern - write a data pattern to the Rulbus.

* /

#include "rulbus.h" // header
#include <stdio.h> // for fprintf()
#include <stdlib.h> // for EXIT_SUCCESS
#include <conio.h> // for kbhit()

int error() { return EXIT_FAILURE; }

int main()
{

int32 pattern = 0x5E; // test pattern
int32 rack = 0; // rulbus rack number
int32 addr = 0; // rulbus base address

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.9 Generic Rulbus Device 25

int32 offset = 0x12; // rulbus address offset
int32 handle = 0; // handle to generic rulbus device

// open the generic rulbus device
if (RulbusDevice_open(&handle, "Rulbus-test-device"))

return error();

RulbusDevice_getRack (handle, &rack);
RulbusDevice_getAddress(handle, &addr);

fprintf(stdout, "Writing [%d:0x%02X] <- 0x%02X\n", rack, addr + offset, pattern);
fprintf(stderr, "\nPress a key to stop...");

while(!kbhit()) // write pattern until a key is pressed
if (0 > RulbusDevice_putByte(handle, offset, pattern));

return error();

(void) getch(); // eat character

if (RulbusDevice_close(handle))
return error(); // close the generic rulbus device

return EXIT_SUCCESS;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

26 Rulbus Device Library for Microsoft Windows Module Documentation

2.10 RB8506 Parallel Interface

2.10.1 Detailed Description

Purpose Provide digital inputs and outputs.

Description Module RB8506 is a (dual) parallel interface. Internally the module may contain Motorola
Peripheral Interface Adapter MC6821 (Pia) ICs or Rockwell Versatile Interface Adapater R6522 (Via) ICs
or a combination of both.

The following variations of this module are known to exist:

• dual with two Pia’s

• dual with a Pia and a Via

• dual with two Via’s

• single Pia (small front)

You should create a separate object for each Pia/Via in a Parallel Interface module.

The Parallel Interface front-panels look as follows.

dual single

+----------------------+ +-----------+
Parallel Interface		Parallel		
		Interface		
Pia 1 Pia 2				
pb0 pb4		pb0		
== (o) (o)		(o)		
	..	pb1 pb5		pb1
	..	(o) (o)		(o)
	..	pb2 pb6		P pb2
	..	(o) (o)		I (o)
	..	pb3 pb7		A pb3
	..	(o) (o)		2 (o)
== cb1 cb2		cb1		
(o) (o)		(o)		
RULBUS		RULBUS		
+----------------------+ +-----------+

PIA and VIA offer the following interface pins.

port pin direction description
A PA0..PA7 i/o level inputs and outputs
A CA1 input active edge transition sets interrupt flag
A CA2 i/o complex operation
B PB0..PB7 i/o level inputs and outputs
B CB1 input active edge transition sets interrupt flag
B CB2 i/o complex operation

SeePiaandVia for a more detailed description of the IC’s capabilities.

The 50-pin connector for Pia 1 makes all its pins of Port A and Port B available. Of Pia 2, the BNC-
connectors provide access to only Port B pins.

See pport.cpp for an example program. It contains several bit-manipulation functions.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.10 RB8506 Parallel Interface 27

Configuration The RB8506 parallel interface module has no properties that are configured at production
time.

Default configuration

rb8506_pia "name1"
{

address = 0x90
}

rb8506_via "name2"
{

address = 0x90
}

When the Rulbus configuration file is read, the parallel interface ports are left unchanged.

Usage There are three groups of functions:

• open and close functions

type names are "pia" and "via"

• port-related functions:

port names are "CA", "CB", "PA" and "PB"

• line-releated functions:

line names are "CA1", "CA2" "PA0".."PA7" and "CB1", "CB2" "PB0".."PB7"

The port-related functions allow you to read or write a complete port at one time, or to get or set its data
direction.

However, if you want to act on a single line, the line-related functions are more convenient to use.

The following tables show the port names and the bit-positions for the various peripheral lines as used in
the port-related functions and the line names and data-direction specifications for the line-related functions.

bit direction active edge
port 7 6 5 4 3 2 1 0 line in out neg pos
------------------------------- -------------------------------
"PA" PA7 PA0 "PAn" ’i’ ’o’
"CA" CA2 CA1 "CA1" ’n’ ’p’

"CA2" ’i’ ’o’
"PB" PB7 PB0 "PBn" ’i’ ’o’
"CB" CB2 CB1 "CB1" ’n’ ’p’

"CB2" ’i’ ’o’

peripheral lines bit-positions peripheral lines data-direction
for port-related functions for line-related functions

(i/o and data-direction) (n: 0..7)

When setting data direction, a0 in the bitmask makes a lineinput, whereas a1 makes it anoutput. For
CA1 and CB1, a0 makes the input act on the negative edge, a1 makes it sensitive to the positive, upgoing
edge.

When setting output, a0 in the bitmask makes the line levellow, whereas a1 makes ithigh.

When reading data-direction from port CA or CB, the CA1 and CA2 (CB1 and CB2) data-direction settings
are combined as follows:

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

28 Rulbus Device Library for Microsoft Windows Module Documentation

int dir = (getDirCA2() != ’i’) << 1) | getEdgeCA1() != ’n’;

When reading port CA, or CB the CA1 and CA2 (CB1 and CB2) lines are combined as follows:

int data = (getLineCA2() << 1) | getIrqCA1();

So to set PB0..PB1 and CB2 to output and to set PB2..PB3 to input, you may write:

rb8506_pport_setPortDir(handle, "PB", 0x03);
rb8506_pport_setPortDir(handle, "CB", 0x02);

Note that this ignores the previous data-direction setting: it also sets PB4..PB7 to input.

The following code also sets PB0..PB1 and CB2 to output and PB2..PB3 to input, but leaves the other lines
unaffected.

rb8506_pport_setLineDir(handle, "PB0", ’o’);
rb8506_pport_setLineDir(handle, "PB1", ’o’);
rb8506_pport_setLineDir(handle, "CB2", ’o’);
rb8506_pport_setLineDir(handle, "PB2", ’i’);
rb8506_pport_setLineDir(handle, "PB3", ’i’);

To do the equivalent with the port-related functions you could write:

int32 dir;
rb8506_pport_getPortDir(handle, "PB", &dir);
rb8506_pport_setPortDir(handle, "PB", (dir & ~0x0F) | 0x03);
rb8506_pport_getPortDir(handle, "CB", &dir);
rb8506_pport_setPortDir(handle, "CB", dir | 0x02);

With dir & ∼0x0F we first clear the bits for lines we want to define, PB0..PB3 (0x0F is 00001111
binary).

Note that for CB2 we just as well could writerb8506_pport_setPortDir(handle, "CB", 0x02)as before,
since it is the only output-capable line of port CB (setting CB1’s data-direction is silently ignored).

Bitmasks To address specific pins in port data, you need to use a bitmask. For example, a bitmask of
0x21 specifies pin 0 and pin 5. The mask can also be made with:

1 << 5 | 1 << 0

Having read direction or data, you use the bitmask to select the pin(s) you are interested in, for example:

char dir_pin5 = (direction_read & (1 << 5)) ? ’o’ : ’i’;

Seepport.cppfor an example program. It contains several bit-manipulation functions.

Open and close

• EXPORTint32 RDL_API rb8506_pport_open(int32 ∗pHandle,CCstrname)

open a PIA or a VIA.

• EXPORTint32 RDL_API rb8506_pport_close(int32 handle)

close a PIA.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.10 RB8506 Parallel Interface 29

Data direction

• EXPORTint32 RDL_API rb8506_pport_getPortDir(int32 handle,CCstrport, int32 ∗pDir)

get port data direction.

• EXPORTint32 RDL_API rb8506_pport_setPortDir(int32 handle,CCstrport, int32 dir)

set port data direction.

• EXPORTint32 RDL_API rb8506_pport_getLineDir(int32 handle,CCstrline, char8∗pDir)

get line direction.

• EXPORTint32 RDL_API rb8506_pport_setLineDir(int32 handle,CCstrline, char8dir)

set line direction.

Data input and output

• EXPORTint32 RDL_API rb8506_pport_getPortData(int32 handle,CCstrport, int32 ∗pData)

get port data.

• EXPORTint32 RDL_API rb8506_pport_setPortData(int32 handle,CCstrport, int32 data)

set port data.

• EXPORTint32 RDL_API rb8506_pport_getLineLevel(int32 handle,CCstrline, int32 ∗pLevel)

get line level.

• EXPORTint32 RDL_API rb8506_pport_setLineLevel(int32 handle,CCstrline, int32 level)

set line level.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

30 Rulbus Device Library for Microsoft Windows Module Documentation

2.11 RB8506 SIFU

2.11.1 Detailed Description

Purpose Provide digital inputs and outputs.

Description Module RB8506, SIFU variant, is a digital input-output interface. It has four level-sensitive
inputs, four negative-edge-sensitive inputs, four level outputs and four outputs that can be pulsed as a group.

There is also a provision to check if any of both the negative-edge-sensitive inputs and the level-sensitive
inputs have changed state since it was last checked.

Inputs and outputs are available in TTL and in CMOS: TTL or CMOS can be selected with a switch on the
front, two inputs or two outputs at the time. A LED indicates if TLL (red) or CMOS (green) is selected.

The SIFU module consists of a PIA parallel interface (seeRB8506 Parallel Interface) and a Sense Interrupt
Flag Unit (SIFU) board.

The module’s front-panel looks as follows.

+---+
| I/O CONTROLLER BOX |
| Input |
| 5 puls 4 1 level 0 |
| C A |
| (O) (X) (O) (O) (X) (O) |
| M |
| O o o o o o o o o |
| N 7 6 3 2 |
| O D B |
| C (O) (X) (O) (O) (X) (O) |
| H |
| R H G F E D C B A CMOS |
| O % % % % % % % % |
| M TTL |
| A |
| T (O) (X) (O) (O) (X) (O) |
| O G E |
| R 5 4 1 0 |
| o o o o o o o o |
| C 7 6 3 2 |
| A |
| B (O) (X) (O) (O) (X) (O) |
| L H F |
| E 7 puls 6 3 level 2 |
| Output |
| |
| RULBUS |
+---+

(O) BNC connector ů (X) red-green LED ů o mini plug ů % switch

The table below indicates which lines are pulse or level inputs-ouputs.

line | kind of input-output
------+----------------------

0 |]
1 |] level
2 |]
3 |]

|
4 |]

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.11 RB8506 SIFU 31

5 |] negative pulse
6 |] note 1
7 |]

Note 1: contrary to what the hardware documentation states, I think that the pulse inputs are sensitive to a
high-low transition.

Configuration The RB8506 SIFU module has no properties that are configured at production time.

Default configuration

rb8506_sifu "name"
{

address = 0x94
}

When the Rulbus configuration file is read, the SIFU is initialized as follows:

• the input port is read to clear any history

• the ouput port is set to zero

Usage There are functions to read all inputs at a time or to read each input line individually. Further there
are functions to check if any line has changed since the last time it was checked. Ouputs may be read or
written all at once or each output may be read or written individually. Four pulse outputs can be pulsed at
one time.

int32 handle;
int32 flag;

rb8506_sifu_open(&handle, "sifu");

rb8506_sifu_isChangedInputLine(handle, &flag);

if (flag)
{

int32 data;

rb8506_sifu_getInputPortData (handle, &data);
rb8506_sifu_setOutputPortData(handle, data);

}

rb8506_sifu_close(handle);

Open and close

• EXPORTint32 RDL_API rb8506_sifu_open(int32 ∗pHandle,CCstrname)

open a sifu.

• EXPORTint32 RDL_API rb8506_sifu_close(int32 handle)

close a sifu.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

32 Rulbus Device Library for Microsoft Windows Module Documentation

Data input

• EXPORTint32 RDL_API rb8506_sifu_getInputPortData(int32 handle,int32 ∗pData)

get the input port data; also clears input flip-flops.

• EXPORTint32 RDL_API rb8506_sifu_isChangedInputLine(int32 handle,int32 ∗pFlag)

true if the level of one or more input lines have changed; clears input-has-changed flag; see alsorb8506_-
sifu_tstInputLineLevel().

• EXPORTint32 RDL_API rb8506_sifu_tstInputLineLevel(int32 handle,int32 line, int32 ∗pLevel)

get the level of the specified input line; clears input-has-changed flag, retains state of input flip-flops; see
alsorb8506_sifu_isChangedInputLine().

• EXPORTint32 RDL_API rb8506_sifu_getInputLineLevel(int32 handle,int32 line, int32 ∗pLevel)

get the level of the specified input line; clears input flip-flops.

Data ouput

• EXPORTint32 RDL_API rb8506_sifu_getOutputPortData(int32 handle,int32 ∗pData)

get the output port data.

• EXPORTint32 RDL_API rb8506_sifu_setOutputPortData(int32 handle,int32 data)

set the output port data.

• EXPORT int32 RDL_API rb8506_sifu_getOutputLineLevel(int32 handle,int32 line, int32 ∗p-
Level)

get the line level of the specified output line.

• EXPORTint32 RDL_API rb8506_sifu_setOutputLineLevel(int32 handle,int32 line, int32 level)

set or clear specified output line.

Pulse control

• EXPORTint32 RDL_API rb8506_sifu_isEnabledPulseOutputs(int32 handle,int32 ∗pFlag)

true if the pulse outputs are enabled.

• EXPORTint32 RDL_API rb8506_sifu_enablePulseOutputs(int32 handle,int32 flag)

enable or disable pulse outputs.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.12 RB8509 12-bit ADC 33

2.12 RB8509 12-bit ADC

2.12.1 Detailed Description

Purpose Measure a voltage.

Description Module RB8509 is a 8-channel 12-bit analog to digital converter (ADC).

The module has eight analog inputs and a trigger input to start a data acquisition. A data acquisition can
also be started by a software trigger.

Module RB8509 contains the following parts:

• a channel selector to select one of the eight inputs [ch0..ch7]

• a gain selector to select one of the four gains [1, 2, 4, 8]

• a 12-bit data Analog to Digital Converter

The following variations of this module are known to exist:

• 8-channel input, no external trigger input

• 4-channel input

The module’s front-panels look as follows.

8-channel 4-channel

+----------------------+ +-----------+
A/D Converter 12-bit		12-bit ADC
Adc 0 Adc 4		
(o) x (o) x		
		ch0 (o)
Adc 1 Adc 5		
(o) x (o) x		ch1 (o)
Adc 2 Adc 6		ch2 (o)
(o) x (o) x		
		ch3 (o)
Adc 3 Adc 7		
(o) x (o) x		trg (o)
RULBUS		RULBUS
+----------------------+ +-----------+

Configuration At production time, the ADC is configured for unipolar or bipolar operation and its input
voltage range is defined as 10 or 20V.

The following table shows the volt-per-bit values for the various input voltage ranges.

Voltage range | volt-per-bit bipolar
----------------------+--------------------------

0 .. 10.2375 V | 2.5 mV 0
-5.12 .. 5.1175 V | 2.5 mV 1

-10.24 .. 10.235 V | 5 mV 1

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

34 Rulbus Device Library for Microsoft Windows Module Documentation

Default configuration

rb8509_adc12 "name"
{

address = 0xC0
bipolar = true
volt_per_bit = 5e-3

}

When the Rulbus configuration file is read, ADCs are configured as follows:

• external trigger disabled

• gain 1 selected

• channel 0 selected

Usage Among others, there are functions to select channel and gain and to acquire and obtain the input
voltage of the selected input.

int32 handle;
const int channel = 0;
float32 voltage = 0;

rb8509_adc12_open(&handle, "adc");

rb8509_adc12_setChannel(handle, channel);
rb8509_adc12_autoscale (handle);
rb8509_adc12_getVoltage(handle, &voltage);

rb8509_adc12_close(handle)

Open and close

• EXPORTint32 RDL_API rb8509_adc12_open(int32 ∗pHandle,CCstrname)

open an ADC.

• EXPORTint32 RDL_API rb8509_adc12_close(int32 handle)

close an ADC

Channel selection

• EXPORTint32 RDL_API rb8509_adc12_getChannel(int32 handle,int32 ∗pChannel)

get currently selected channel [0..7].

• EXPORTint32 RDL_API rb8509_adc12_setChannel(int32 handle,int32 channel)

select channel [0..7].

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.12 RB8509 12-bit ADC 35

Gain selection

• EXPORTint32 RDL_API rb8509_adc12_getGain(int32 handle,int32 ∗pGain)

get currently selected gain [1,2,4,8].

• EXPORTint32 RDL_API rb8509_adc12_setGain(int32 handle,int32 gain)

select gain [1,2,4,8].

• EXPORTint32 RDL_API rb8509_adc12_autoscale(int32 handle)

determine and set amplifier gain to fit current signal.

Data acquisition

• EXPORTint32 RDL_API rb8509_adc12_convert(int32 handle)

start an analog to digital conversion.

• EXPORTint32 RDL_API rb8509_adc12_isReady(int32 handle,int32 ∗pFlag)

true if result is available; flag is reset by reading result.

• EXPORTint32 RDL_API rb8509_adc12_getVoltage(int32 handle,float32∗pVoltage)

issue software trigger and return input-voltage measured, may return 1 on timeout; OR wait for external
trigger and return input-voltage measured.

• EXPORTint32 RDL_API rb8509_adc12_getValue(int32 handle,int32 ∗pValue)

issue software trigger and return conversion value, may return 1 on timeout; OR wait for external trigger
and return conversion value.

Triggering

• EXPORTint32 RDL_API rb8509_adc12_getExtTriggerLevel(int32 handle,int32 ∗pFlag)

the current external trigger level.

• EXPORTint32 RDL_API rb8509_adc12_isEnabledExtTrigger(int32 handle,int32 ∗pFlag)

true if external trigger-input is enabled.

• EXPORTint32 RDL_API rb8509_adc12_enableExtTrigger(int32 handle,int32 flag)

enable or disable external trigger-input.

Configuration

• EXPORTint32 RDL_API rb8509_adc12_isBipolar(int32 handle,int32 ∗pFlag)

true if ADC has bipolar configuration.

• EXPORTint32 RDL_API rb8509_adc12_getVoltperbit(int32 handle,float32∗pVpb)

the ADC’s input sensitivity configuration.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

36 Rulbus Device Library for Microsoft Windows Module Documentation

2.13 RB8510 12-bit DAC

2.13.1 Detailed Description

Purpose Generate a unipolar or bipolar voltage.

Description Module RB8510 is a dual 12-bit Digital to Analog Converter. It contains two 12-bit Digital
to Analog Converters (DACs), each connecting to a BNC connector on the front panel. There are no inputs.

The module’s front-panel looks as follows.

+-----------+
| CONVERTER |
| 12-bit |
| |
| dac1 |
| (o) |
| |
| |
| |
| |
| dac0 |
| (o) |
| |
| |
| |
| RULBUS |
+-----------+

Configuration At production time, each DAC is configured for unipolar or bipolar operation and its
output voltage range is defined as 5, 10 or 20V.

The following table shows the volt-per-bit values for the various output voltage ranges.

Voltage range | volt-per-bit bipolar
----------------------+--------------------------

0 .. 5.11875 V | 1.25 mV 0
0 .. 10.2375 V | 2.5 mV 0
0 .. 20.475 V | 5 mV 0

-5.12 .. 5.1175 V | 2.5 mV 1
-10.24 .. 10.235 V | 5 mV 1

Default configuration

rb8510_dac12 "name"
{

address = 0xD0
bipolar = true
volt_per_bit = 5e-3

}

When the Rulbus configuration file is read, DAC-outputs are set to 0 Volt.

Usage There are functions to set and get the output voltage and functions to set and get the DAC-register
code.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.13 RB8510 12-bit DAC 37

int32 handle;

rb8510_dac12_open(&handle, "dac-ch0");
rb8510_dac12_setVoltage(1.23);
rb8510_dac12_close(handle);

For each channel of the DAC module, a separate object must be created.

Seedac.cppfor a complete example.

Open and close

• EXPORTint32 RDL_API rb8510_dac12_open(int32 ∗pHandle,CCstrname)

open a DAC.

• EXPORTint32 RDL_API rb8510_dac12_close(int32 handle)

close a DAC.

Voltage output

• EXPORTint32 RDL_API rb8510_dac12_getVoltage(int32 handle,float32∗pVoltage)

get current DAC voltage.

• EXPORTint32 RDL_API rb8510_dac12_setVoltage(int32 handle,float32voltage)

set DAC to new voltage.

Value output

• EXPORTint32 RDL_API rb8510_dac12_getValue(int32 handle,int32 ∗pValue)

get current DAC register value.

• EXPORTint32 RDL_API rb8510_dac12_setValue(int32 handle,int32 value)

set DAC register to new value.

Configuration

• EXPORTint32 RDL_API rb8510_dac12_isBipolar(int32 handle,int32 ∗pFlag)

true if DAC has bipolar configuration.

• EXPORTint32 RDL_API rb8510_dac12_getVoltperbit(int32 handle,float32∗pVpb)

set DAC register to new code.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

38 Rulbus Device Library for Microsoft Windows Module Documentation

2.14 RB8513 Timebase

2.14.1 Detailed Description

Purpose Generate short pulses with a programmable interval time.

Description Module RB8513 is a clock signal generator with a programmable interval time. It has a TTL
trigger input and a TTL clock output.

The module’s front-panel looks as follows.

+-----------+
|TIME BASE |
|prog 50n-1s|
| output |
| (o) |
| TTL |
| |
| |
| |
| |
| input |
| (o) |
| TTL |
| |
| RULBUS |
+-----------+

The module can generate a clock signal with the following interval times.

Programmable interval times

50 ns
100 ns
200 ns
500 ns

1 us - 99 us, step 1 us
100 us - 9.9 ms, step 100 us

10 ms - 990 ms, step 10 ms

Configuration The RB8513 timebase module has no properties that are configured at production time.

Default configuration

rb8513_timebase "name"
{

address = 0xB0
}

When the Rulbus configuration file is read, the timebase interval time is set to 1 us.

Usage There are functions to set and get the interval time.

int32 handle;

rb8513_timebase_open(&handle, "timebase");
rb8513_timebase_setIntervalTime(1e-3);
rb8513_timebase_close(handle)

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.14 RB8513 Timebase 39

Open and close

• EXPORTint32 RDL_API rb8513_timebase_open(int32 ∗pHandle,CCstrname)

open a timebase.

• EXPORTint32 RDL_API rb8513_timebase_close(int32 handle)

close a timebase.

Control

• EXPORTint32 RDL_API rb8513_timebase_stop(int32 handle)

stop timebase.

Interval Time

• EXPORTint32 RDL_API rb8513_timebase_getIntervalTime(int32 handle,float32∗pTime)

get the current interval time in s.

• EXPORTint32 RDL_API rb8513_timebase_setIntervalTime(int32 handle,float32 time)

set set interval time to 50 ns, 100 ns, 200 ns, 500 ns, 1..99 us, 0.1..9.9 ms, 10..990 ms.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

40 Rulbus Device Library for Microsoft Windows Module Documentation

2.15 RB8514 Time Delay

2.15.1 Detailed Description

Purpose Generate a programmable time delay.

Description Module RB8514 is a programmable delay time generator.

It has a clock input, a trigger input, two delay outputs, a gate and a gate-not output, and a Rulbus interrupt
output.

The module’s front-panel looks as follows.

+-----------+
| DELAY |
| |
| |
| |
| (o) CLOCK|
| (o) TRIG |
| (o) OUT1 |
| (o) OUT2 |
| (o) GATE |
| (o)/GATE |
| |
| |
| |
| RULBUS |
+-----------+

The delay is made with a 24-bit down counter that counts a programmable number of clock-pulses, when
started by a trigger-pulse on the trigger input. SeesetClockFrequency(), setIntrinsicDelayTime(), setDelay-
Time(), setDelayCount(), isBusy().

The trigger input can be made positive or negative edge sensitive. Besides triggering the delay with the
trigger-input, it is also possible to trigger the delay with a software command. SeesetSignalDirection()and
trigger().

Each of the two delay outputs (1 and 2) can be programmed to generate a short pulse (15 ns) at the start of
the delay, at the end of it, both or to generate no pulse at all. SeeenableSignal().

The level of the start- and end-pulses of output 1 and 2 can be made positive or negative. The restriction is
that both outputs have the same polarity for the same pulse. SeesetSignalDirection().

An additional restriction with negative pulses is, that only the start-or the end-pulse may be enabled on an
output.

The gate and gate-not outputs generate a pulse from the start of the delay time upto the end of it. The
gate-output is active high, the gate-not output is active low.

Configuration The RB8514 delay module has no attributes that are configured at production time.

Default configuration

rb8515_delay "name"
{

address = 0xC4
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.15 RB8514 Time Delay 41

When the Rulbus configuration file is read, delay modules are initialized as follows:

• clock frequency 1 Hz

• delay time 1 s

• all signals positive

• start and stop pulses enabled

Usage Among others, there are functions to specify the delay module’s clock frequency and signal po-
larities and signal enable-states and to specify the module’s delay time.

int32 handle;

rb8514_delay_open(&handle, "delay");

rb8514_delay_setClockFrequency(handle, 10e6);
rb8514_delay_enableSignal (handle, "s1", 1);
rb8514_delay_enableSignal (handle, "e1", 0);
rb8514_delay_enableSignal (handle, "s2", 0);
rb8514_delay_enableSignal (handle, "e2", 1);
rb8514_delay_setDelayTime (handle, 1e-3);

rb8514_delay_close(handle)

Open and close

• EXPORTint32 RDL_API rb8514_delay_open(int32 ∗pHandle,CCstrname)

open a delay module.

• EXPORTint32 RDL_API rb8514_delay_close(int32 handle)

close a delay module .

Clock frequency

• EXPORTint32 RDL_API rb8514_delay_getClockFrequency(int32 handle,float32∗pFrequency)

get the current clock frequency.

• EXPORTint32 RDL_API rb8514_delay_setClockFrequency(int32 handle,float32 frequency)

set clock frequency.

Delay

• EXPORTint32 RDL_API rb8514_delay_getIntrinsicDelayTime(int32 handle,float32∗pTime)

get the current intrinsic delay time (the time subtracted from requested delay time).

• EXPORTint32 RDL_API rb8514_delay_setIntrinsicDelayTime(int32 handle,float32 time)

set intrinsic delay time (will be subtracted from requested delay time).

• EXPORTint32 RDL_API rb8514_delay_getDelayTime(int32 handle,float32∗pTime)

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

42 Rulbus Device Library for Microsoft Windows Module Documentation

get the current delay time.

• EXPORTint32 RDL_API rb8514_delay_setDelayTime(int32 handle,float32 time)

set new delay time.

• EXPORTint32 RDL_API rb8514_delay_getDelayCount(int32 handle,int32 ∗pCount)

get the current delay count.

• EXPORTint32 RDL_API rb8514_delay_setDelayCount(int32 handle,int32 count)

set new delay count.

Signals

• EXPORTint32 RDL_API rb8514_delay_getSignalDirection(int32 handle,CCstrsignal,int32 ∗p-
Dir)

get the current signal direction: signal in [t s1 s2 e1 e2], result: [p n].

• EXPORTint32 RDL_API rb8514_delay_setSignalDirection(int32 handle,CCstrsignal,int32 dir)

set new signal direction: signal in [t s1 s2 e1 e2], dir in [p n i] for positive, negative and invert.

• EXPORT int32 RDL_API rb8514_delay_isEnabledSignal(int32 handle,CCstrsignal,bool32∗p-
Enabled)

get the current signal enable-state: signal in [i s1 s2 e1 e2].

• EXPORTint32 RDL_API rb8514_delay_enableSignal(int32 handle,CCstrsignal,bool32enable)

enable signal: signal in [i s1 s2 e1 e2], i for interrupt.

Timing

• EXPORTint32 RDL_API rb8514_delay_trigger(int32 handle)

software trigger: start delay.

• EXPORTint32 RDL_API rb8514_delay_isBusy(int32 handle,bool32∗pBusy)

true if timing a delay.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.16 RB8515 Clock for Time Delay 43

2.16 RB8515 Clock for Time Delay

2.16.1 Detailed Description

Purpose Generate a clock signal for the time delay module RB8514.

Description Module RB8515 is a clock signal generator for time delay module RB8514.

It provides fixed frequency outputs and clock outputs with programmable frequency output with pro-
grammable frequency via SMB connectors on the front panel. The module can also generate a Rulbus
interrupt with a programmable frequency, but it is not made available by this driver. There are no inputs.

The following front-panel variations of this module exist:

• seven identical outputs with programmable frequency

• four different fixed-frequency output and three identical outputs with programmable frequency

The module’s front-panels look as follows.

fixed & programmable programmable only
+-----------+ +-----------+
CLOCK		CLOCK
(o) 100M		(o)
(o) 10M		(o)
(o) 1M		(o)
(o) 100k		(o)
SELECTABLE		(o)
(o)		(o)
(o)		(o)
(o)		
RULBUS		RULBUS
+-----------+ +-----------+

The following frequencies are available.

Output | Description
--------------+---
Ffixed | fixed frequencies:

| 100 kHz, 1 MHz, 10 MHz and 100 MHz
|

Fprogrammable | programmable frequencies:
| 0 Hz (disabled), 100 Hz, 1 kHz, 10 kHz, 100 kHz, 1 MHz, 10 MHz and 100 MHz.

Configuration The RB8515 clock module has no properties that are configured at production time.

Default configuration

rb8515_clock "name"
{

address = 0xC8
}

When the Rulbus configuration file is read, the programmable clock outputs are set to 1 kHz.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

44 Rulbus Device Library for Microsoft Windows Module Documentation

Usage There are functions to set and get the clock frequency.

int32 handle;

rb8515_clock_open(&handle, "clock");
rb8515_clock_setClockFrequency(10e6);
rb8515_clock_close(handle)

Open and close

• EXPORTint32 RDL_API rb8515_clock_open(int32 ∗pHandle,CCstrname)

open a clock.

• EXPORTint32 RDL_API rb8515_clock_close(int32 handle)

close a clock.

Clock frequency

• EXPORTint32 RDL_API rb8515_clock_getClockFrequency(int32 handle,float32∗pFrequency)

get current clock frequency.

• EXPORTint32 RDL_API rb8515_clock_setClockFrequency(int32 handle,float32 frequency)

set clock frequency.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.17 RB8905 12-bit ADC 45

2.17 RB8905 12-bit ADC

2.17.1 Detailed Description

Purpose Measure a voltage trace.

Description Module RB8905 is a 1 Mega-sample per second 12-bit analog to digital converter with a 32
kByte on-board data buffer.

The module has a single analog input and a clock input to do a series of data acquisitions. The number of
samples to store on-board is programmable.

Module RB8905 contains the following parts:

• a track and hold

• a 12-bit ADC

• an address counter

• a 32 kByte on-board data buffer

The ADC can be programmed for bipolar or unipolar use. The input voltage span of the ADC is configured
at production time for 10 V or 20 V.

The analog to digital converter IC is an ADC601 manufactured by Burr-Brown. This 12-bit ADC normally
converts samples at a rate of 1 Ms/s (900 ns), but it also can convert at a rate of 2 Ms/s (400 ns). In the
latter case, only eight bits are determined and this mode of operation is called short-cycle mode (fast mode,
8-bit result).

The number of samples to store on-board can be specified in one of two ways (normal conversion mode
assumed):

1. 1–128 samples: specified by JMP3 on the module’s board

2. 256–16384 samples: specified programmatically

The number of samples to store on-board can be specified with functionrb8905_adc12_setBuffer-
Capacity(). Specifiying zero for the number of samples, or capacity, selects the JMP3 setting. For 256
and more samples, the number of samples is a power of two: 256, 512, 1024 etc.

The module’s front-panels look as follows.

+-----------+ +-----------+
ADC12HS		ADC12HS
clock		clock
(o)		(o)
		bit07
		(o)
input		input
(o)		(o)
RULBUS		RULBUS
+-----------+ +-----------+

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

46 Rulbus Device Library for Microsoft Windows Module Documentation

Note that bit07 on the right front-panel provides the signal that indicates the end of a series of data acqui-
sitions, or that indicates that all samples have been read, when reading.

Configuration At production time, the ADC is configured for an input voltage range of 10 V or 20 V.

The following table shows the volt-per-bit values for the various input voltage spans.

Voltage span | volt-per-bit bipolar
---------------+--------------------------

0 .. 10 V | 2.442002 mV no
-5 .. 5 V | 2.442002 mV yes

-10 .. 10 V | 4.884004 mV yes

Note that when the ADC’s fast conversion mode (8-bit result) is used, the input voltage span is reduced with
a factor of 16 (2∧4). Seerb8905_adc12_getMinInputVoltage()andrb8905_adc12_getMaxInputVoltage().

Default configuration

rb8905_adc12 "name"
{

address = 0xBC
volt_per_bit = 2.442002 m

}

When the Rulbus configuration file is read, an ADC is configured as follows:

• normal conversion mode

• bipolar mode

• 256 samples

• Rulbus interrupt disabled

Usage There are functions to set the conversion mode, to set the input voltage polarity, to set the number
of samples to acquire and to read the input as ADC- value or as voltage at the ADC’s input.

#define N 512

int32 handle;
int32 nread;
float32 trace[N];

rb8905_adc12_open(&handle, "adc");

rb8905_adc12_setBufferCapacity(handle, N);
rb8905_adc12_arm();

while (!rb8905_adc12_isReady(handle))
wait();

rb8905_adc12_readVoltage(handle, trace, N, &nread);

rb8905_adc12_close(handle);

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.17 RB8905 12-bit ADC 47

Open and close

• EXPORTint32 RDL_API rb8905_adc12_open(int32 ∗pHandle,CCstrname)

open an ADC.

• EXPORTint32 RDL_API rb8905_adc12_close(int32 handle)

close an ADC.

Data acquisition

• EXPORTint32 RDL_API rb8905_adc12_arm(int32 handle)

arm ADC for data-acquisition; a sample is taken each clock-pulse.

• EXPORTint32 RDL_API rb8905_adc12_isReady(int32 handle,int32 ∗pFlag)

true if all samples have been measured or if all samples have been read-out.

• EXPORT int32 RDL_API rb8905_adc12_readVoltage(int32 handle, float32 ∗pVoltage, int32
nelem,int32 ∗nread)

read nelem elements as voltage from the on-board data buffer, pass number of elements actually read in
nread;note that the voltage datatype isfloat32.

• EXPORT int32 RDL_API rb8905_adc12_readValue(int32 handle, int16 ∗pValue, int32 nelem,
int32 ∗nread)

read nelem elements as value from the on-board data buffer, pass number of elements actually read in nread;
the 8-bit/12-bit unipolar samples are presented as (unsigned) magnitude codes, bipolar values are presented
as offset binary codes;note that the value datatype isint16.

On-board buffer

• EXPORTint32 RDL_API rb8905_adc12_getBufferCapacity(int32 handle,int32 ∗pCapacity)

get the number of samples to acquire in the on-board buffer.

• EXPORTint32 RDL_API rb8905_adc12_getJmp3BufferCapacity(int32 handle,int32 ∗pCapacity)

get the JMP3 setting for the number of samples to store on-board.

• EXPORTint32 RDL_API rb8905_adc12_setBufferCapacity(int32 handle,int32 capacity)

set the number of samples to acquire in the buffer; use JMP3 setting when zero is specified.

Configuration

• EXPORTint32 RDL_API rb8905_adc12_isFastMode(int32 handle,int32 ∗pFlag)

true if fast (short-cycle) mode is selected (8-bit data).

• EXPORTint32 RDL_API rb8905_adc12_setFastMode(int32 handle,int32 isfast)

set converter to fast or short-cycle mode (8-bit data, isfast is true), or set converter to normal mode (12-bit
data, isfast is false).

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

48 Rulbus Device Library for Microsoft Windows Module Documentation

• EXPORTint32 RDL_API rb8905_adc12_isUnipolarMode(int32 handle,int32 ∗pFlag)

true if unipolar mode is selected.

• EXPORTint32 RDL_API rb8905_adc12_setUnipolarMode(int32 handle,int32 isunipolar)

set converter to unipolar mode (isunipolar is true), or set converter to bipolar mode (isunipolar is false).

• EXPORTint32 RDL_API rb8905_adc12_getVoltperbit(int32 handle,float32∗pVpb)

get the ADC input sensitivity configuration.

• EXPORTint32 RDL_API rb8905_adc12_getVoltageSpan(int32 handle,float32∗pSpan)

get the ADC input voltage span.

• EXPORTint32 RDL_API rb8905_adc12_getOffsetVoltage(int32 handle,float32∗pVoltage)

get the ADC offset voltage.

• EXPORTint32 RDL_API rb8905_adc12_getMinInputVoltage(int32 handle,float32∗pVoltage)

get the lowest acceptable ADC input voltage; takes mode settings into account.

• EXPORTint32 RDL_API rb8905_adc12_getMaxInputVoltage(int32 handle,float32∗pVoltage)

get the highest acceptable ADC input voltage; takes mode settings into account.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.18 RB9005 Instrumentation Amplifier 49

2.18 RB9005 Instrumentation Amplifier

2.18.1 Detailed Description

Purpose Provide programmable amplifiers and filters to form a data-acquisition system with the high
speed 12-bit ADC RB8905.

Description Module RB9005 is a 4-channel programmable amplifier-filter module.

The module’s front-panel looks as follows.

+----------------------+
| Programable |
| Differential Amp. |
| +input1 input3 |
| (o) (o) |
| |
| -input1 input4 |
| (o) (o) |
| |
| +input2 ouput |
| (o) (o) |
| clock |
| -input2 in o1 o2 |
| (o) (o)(o)(o) |
| |
| RULBUS |
+----------------------+

It has two differential programmable amplifiers followed by a programmable filter, two unbalanced input
(single-ended) programmable amplifiers and an ouput multiplexer to present one, two, three or all four
inputs in sequence.

1-1-1-1 ů 2-1-2-1 ů 3-2-1-3 ů 4-3-2-1

Further the module has a clock input and two clock outputs that can be programmed to duplicate the clock
input or to follow an alternating sequence so that out1 presents a clock signal for the odd channels and out2
presents a clock signal for the even channels in the selected channel sequence. (Apparently this is not very
useful for the 3-2-1-3 sequence where channel 3 appears at odd and even positions in the sequence.)

Amplifiers Low Pass Filters Multiplexer

_ .------------.
in1+ o---| = _ .------. | |

|G1 _>--------------| LPF1 |-------------| Ch1 |
in1- o---|_= ‘------’ | |

| | | |
| _ | | |

in2+ o--------| = _ | .------. | |
| |G2 _>---------------| LPF2 |-------| Ch2 |---o output

in2- o--------|_= | ‘------’ | |
	_				
		= _			

in3+ o-------------|G3 _>-------------------------| Ch3 |
| | |_= | | | .----| Clock
| | | | | | | |
| | | _ | | | | |-<-o input
| | | | = _ | | | | |

in4+ o------------------|G4 _>--------------------| Ch4 | |->-o out1

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

50 Rulbus Device Library for Microsoft Windows Module Documentation

| | | |_= | | |-------’ |
| | | | | | | |->-o out2
| | | | | | ‘------------’
| | | | | | | | |
^ ^ ^ ^ ^ ^ ^ | ^
G1 G2 G3 G4 F1 F2 Channel ^ doClockSequence

doChannnelsequence
_________________ software control ______________________/

The following table shows the module’s gain and low-pass filter characteristics.

Channel | Gain F-LowPass [kHz] programmable
--------+--

1, 2 | 10, 20, 40, 80 >= 1000 (no filter)
| 100, 200, 400, 800 100 yes
| 1000, 2000, 4000, 8000 10 yes
| 10000, 20000, 40000, 80000 1 yes
| 0.1 yes
|

3, 4 | 1 3000 no
| 10 : no
| 100 : no
| 1000 312 no

Configuration The RB9005 amplifier module has no properties that are configured at production time.

Default configuration

rb9005_amplifier "name"
{

address = 0xB3
}

When the Rulbus configuration file is read, an amplifier is configured as follows:

• channel 1 selected

• gain channel 1 and 2 set to 10

• gain channel 3 and 4 set to 1

• low pass frequency channel 1 and 2 set to>= 1 MHz (no filter)

• channel sequence disabled

• clock sequence disabled

Usage There are functions to select and obtain the channel, the gain and the low pass filter frequencies
(channel1 and 2), and there are functions to enable or disable the channel and clock sequence modes.

int32 handle;

rb9005_amplifier_open(&handle, "amplifier");
rb9005_amplifier_setChannel(handle, 1);
rb9005_amplifier_setGain(handle, 1, 10);
rb9005_amplifier_setLowPassFrequency(handle, 1, 1e4);
rb9005_amplifier_close(handle)

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.18 RB9005 Instrumentation Amplifier 51

Open and close

• EXPORTint32 RDL_API rb9005_amplifier_open(int32 ∗pHandle,CCstrname)

open an amplifier.

• EXPORTint32 RDL_API rb9005_amplifier_close(int32 handle)

close an amplifier.

Channel, gain and filters

• EXPORTint32 RDL_API rb9005_amplifier_getChannel(int32 handle,int32 ∗pChannel)

get the current channel (1..4).

• EXPORTint32 RDL_API rb9005_amplifier_setChannel(int32 handle,int32 channel)

select the specified channel, or channel sequence (1..4).

• EXPORTint32 RDL_API rb9005_amplifier_getGain(int32 handle,int32 channel,int32 ∗pGain)

get the channel’s current gain.

• EXPORTint32 RDL_API rb9005_amplifier_setGain(int32 handle,int32 channel,int32 gain)

set gain for specified channel.

• EXPORT int32 RDL_API rb9005_amplifier_getLowPassFrequency(int32 handle,int32 channel,
float32∗pFreq)

the channel’s current low pass frequency (channel 1 & 2 only).

• EXPORT int32 RDL_API rb9005_amplifier_setLowPassFrequency(int32 handle,int32 channel,
float32 freq)

set low pass frequency (channel 1 & 2 only).

Channel and clock sequencing

• EXPORTint32 RDL_API rb9005_amplifier_isChannelSequenceMode(int32 handle,int32 ∗pFlag)

true if a channel sequence is active.

• EXPORTint32 RDL_API rb9005_amplifier_setChannelSequenceMode(int32 handle,int32 flag)

enable or disable channel sequencing.

• EXPORTint32 RDL_API rb9005_amplifier_isClockSequenceMode(int32 handle,int32 ∗pFlag)

true if a clock sequence is active.

• EXPORTint32 RDL_API rb9005_amplifier_setClockSequenceMode(int32 handle,int32 flag)

enable or disable clock sequencing.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

52 Rulbus Device Library for Microsoft Windows Module Documentation

2.19 RB9603 Monochromator Controller

2.19.1 Detailed Description

Purpose Control a Bausch & Lomb monochromator remotely.

Description The RB9603 Rulbus module enables remote control of a Bausch & Lomb monochromator
by driving its nonius with a stepping motor.

The target wavelength can be set manually with Up and Down keys on the Rulbus module and program-
matically via the Rulbus computer interface.

The module has a one-line display that shows the target wavelength along with indications if the monochro-
mator is still moving up or down and if the wavelength was set manually or via program control.

Besides setting the wavelength, several properties may be requested from the controller via the computer
interface: the target wavelength, the current wavelength, the minimum and maximum wavelengths and
the current wavelength as seen by the potentiometer on the stepping motor–potentiometer assembly (see
below).

The module’s front-panel looks as follows.

+--------------------------+
| MONOCHROMATOR CONTROLLER |
| .----------------------. |
| | ^ 123.0 nm manual | |
| ‘----------------------’ |
| |
| |
| MOTOR RESET UP |
| .--. |
| o O | | |
| /| ‘--’ |
| | | DOWN |
| | | .--. |
| \| | | |
| o ‘--’ |
| |
| RULBUS |
+--------------------------+

The controller module itself sits in a Rulbus rack. A stepping motor–potentiometer assembly is located
on the Bausch & Lomb monochromator to drive it. Via a cable the assembly is connected to the MOTOR
connector on the controller.

The potentiometer in the assembly records the absolute position of the monochromator. It is used to cali-
brate the monochromator wavelength at 500 nm initially and to check the position when a new wavelength
has been reached.

Configuration The minimum wavelength that can be used can be set at production time with jumper
CN4 to be 0 nm or 100 nm. Minimum and maximum wavelength may be obtained with functionsrb9603_-
monochromator_getMinWavelength()andrb9603_monochromator_getMaxWavelength().

Default configuration

rb9603_monochromator "name"
{

address = 0xCE
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.19 RB9603 Monochromator Controller 53

When the Rulbus configuration file is read, no configuration steps are made with respect to the monochro-
mator Rulbus module.

Usage Besides a function to set the target wavelength, there are several functions to request properties,
for example: the target wavelength, the current wavelength, the minimum and maximum wavelengths and
the current wavelength as seen by the potentiometer on the stepping motor–potentiometer assembly.

int32 handle;
int32 and_wait = true;

rb9603_monochromator_open(&handle, "lamp");
rb9603_monochromator_setTargetWavelength(handle, 500.0e-9, and_wait); // in [m]
rb9603_monochromator_close(handle)

Open and close

• EXPORTint32 RDL_API rb9603_monochromator_open(int32 ∗pHandle,CCstrname)

open a monochromator.

• EXPORTint32 RDL_API rb9603_monochromator_close(int32 handle)

close a monochromator.

Status, wait and calibrate

• EXPORTint32 RDL_API rb9603_monochromator_isReady(int32 handle,int32 ∗pFlag)

pass true if monochromator is at target wavelength.

• EXPORTint32 RDL_API rb9603_monochromator_wait(int32 handle)

wait until monochromator is at target wavelength.

• EXPORTint32 RDL_API rb9603_monochromator_calibrate(int32 handle,int32 and_wait)

move monochromator to 500 nm for calibration.

Wavelength

• EXPORT int32 RDL_API rb9603_monochromator_setTargetWavelength(int32 handle, float32
length,int32 and_wait)

set target wavelength [m].

• EXPORTint32 RDL_API rb9603_monochromator_getTargetWavelength(int32 handle,float32∗p-
Length)

get the target wavelength [m].

• EXPORT int32 RDL_API rb9603_monochromator_getCurrentWavelength(int32 handle,float32
∗pLength)

get the current wavelength [m].

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

54 Rulbus Device Library for Microsoft Windows Module Documentation

• EXPORT int32 RDL_API rb9603_monochromator_getAdcWavelength(int32 handle,float32 ∗p-
Length)

get the current wavelength [m] according to the measured voltage.

• EXPORTint32 RDL_API rb9603_monochromator_getAdcMeanWavelength(int32 handle,float32
∗pLength)

get the current wavelength [m] according to the mean-measured voltage.

• EXPORT int32 RDL_API rb9603_monochromator_getMinWavelength(int32 handle,float32 ∗p-
Length)

get the lowest valid wavelength [m].

• EXPORT int32 RDL_API rb9603_monochromator_getMaxWavelength(int32 handle,float32 ∗p-
Length)

get the highest valid wavelength [m].

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.20 PIA Motorola Peripheral Interface Adapter MC6821 55

2.20 PIA Motorola Peripheral Interface Adapter MC6821

Registers Offset Rd/Wr Description
--
PRDA 0 rd/wr port A peripheral data register (CRA bit 2 = 1)
DDRA 0 rd/wr port A data direction register (CRA bit 2 = 0)
CRA 1 rd/wr port A control register
PRDB 2 rd/wr port B peripheral data register (CRB bit 2 = 1)
DDRB 2 rd/wr port B data direction register (CRB bit 2 = 0)
CRB 3 rd/wr port B control register

Each of the peripheral data lines (PA0..PA7, PB0..PB7) can be programmed to act as an input or as an
output. This is accomplished by setting a "1" in the corresponding Data Direction Register bit for those
lines which are to be outputs. A "0" in a bit of the Data Direction Register causes the corresponding
peripheral data line to act as an input.

Peripheral Data Register:

76543210 : data bits 0..7, 0 for low, 1 for high output.

Data Direction Register:

76543210 : data direction bits, 0 for input, 1 for output.

Control Register (CRA):

76543210

7 : IRQA1 interrupt flag
Goes high on active transition of CA1.
Automatically cleared by MPU read of output register A.
May also be cleared by hardware reset.

6 : IRQA2 interrupt flag
When CA2 is an input, IRQA2 goes high on active transition of CA2.
Automatically cleared by MPU read of output register A.
May also be cleared by hardware reset.

543 : CA2 control
543 : CA2 input
5 : 0 : CA2 input

4 : CA2 active transition for setting IRQA2 flag
0 : IRQA2 set by high-to-low transition on CA2
1 : IRQA2 set by low-to-high transition on CA2

3 : CA2 interrupt request enable
0 : disable IRQA2 interrupt on active transition of CA2
1 : enable IRQA2 interrupt on active transition of CA2

543 : CA2 output
5 : 1 : CA2 output

43 : CA2 output control
0x: strobed CA2 output (operation of CB2 is not identical)
1x: programmed CA2 output with level of bit 3
00: CA2 Read Strobe with CA1 restore
01: CA2 Read Strobe with E restore

(00: CB2 Read Strobe with CB1 restore)
(01: CB2 Read Strobe with E restore)

10: CA2 low
11: CA2 high

2 : data direction register access
0 : Data Direction Register selected

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

56 Rulbus Device Library for Microsoft Windows Module Documentation

1 : Peripheral Data Register selected

1 : CA1 active transition for setting IRQA1
0 : IRQA1 set by high-to-low transition on CA1
1 : IRQA1 set by low-to-high transition on CA1

0 : CA1 interrupt enable
0 : CA1 interrupt disabled
1 : CA1 interrupt enabled

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.21 VIA Rockwell Versatile Interface Adapater R6522 57

2.21 VIA Rockwell Versatile Interface Adapater R6522

Registers Offset Rd/Wr Description
--
PDRB 0 rd/wr Port B Peripheral Data Register
PDRA 1 rd/wr Port A Peripheral Data Register
DDRB 2 rd/wr Port B Data Direction Register
DDRA 3 rd/wr Port A Data Direction Register
T1CL 4 rd/wr Timer 1 counter LSB
T1CH 5 rd/wr Timer 1 counter MSB
T1LL 6 rd/wr Timer 1 latch LSB
T1LH 7 rd/wr Timer 1 latch MSB
T2L 8 rd/wr Timer 2 LSB, write latch, read counter
T2H 9 rd/wr Timer 2 MSB, write latch, read counter
SR 10 rd/wr Shift Register
ACR 11 rd/wr Auxiliary Control Register
PCR 12 rd/wr Peripheral Control Register
IFR 13 rd/wr Interrupt Flag Register
IER 14 rd/wr Interrupt Enable Register
PDRA 15 rd/wr Port A Peripheral Data Register, no handshake

Each of the peripheral data lines (PA0..PA7, PB0..PB7) can be programmed to act as input or output. This
is accomplished by setting a "1" in the corresponding Data Direction Register bit for those lines which are
to be outputs. A "0" in a bit of the Data Direction Register causes the corresponding peripheral data line to
act as an input.

Peripheral Data Register:

76543210 : data bits 0..7, 0 for low, 1 for high output.

Data Direction Register:

76543210 : data direction bits, 0 for input, 1 for output.

Peripheral Control Register (PCR):

76543210

765 : CB2 control; see CA2 control (bits 321)
4 : CB2 interrupt control; see CA2 interrupt control (bit 0)

321 : CA2 control
321 : CA2 input
3 : 0 : CA2 input

2 : CA2 active transition for setting IRQA2 flag
0 : IRQA2 set by high-to-low transition on CA2
1 : IRQA2 set by low-to-high transition on CA2

1 : independent interrupt
0 : CA1 dependent interrupt
1 : independent interrupt; see *), IFR

321 : CA2 output
3 : 1 : CA2 output

21 : CA2 output control
0x: strobed CA2 output
1x: programmed CA2 output with level of bit 3
00: CA2 Handshake output
01: CA2 Pulse output
10: CA2 low
11: CA2 high

0 : CA1 active transition for setting IRQA1
0 : IRQA1 set by high-to-low transition on CA1
1 : IRQA1 set by low-to-high transition on CA1

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

58 Rulbus Device Library for Microsoft Windows Module Documentation

Auxiliary Control Register (ACR):

76543210 : timer control (not used)

Interrupt Flag Register (IFR):

76543210 : what set cleared
7 : CA2 CA2 active edge read or write PDRA *)

6 : CA1 CA1 active edge read or write PDRA *)
5 : SR complete 8 shifts read or write SR

4 : CB2 CB2 active edge read or write PDRB *)
3 : CB1 CB1 active edge read or write PDRB

2 : T2 time out of T2 read T2L or write T2H
1 : T1 time out of T1 read T1L or write T1H

0 : IRQ any enabled interrupt clear all interrupts

*): if the CA2/CB2 control in the PCR is selected as "independent"
interrupt input, then reading or writing the output register
PDRA/PDRB will NOT clear the flag bit. Instead, the bit must
be cleared by writing a one into the appropriate bit of the IFR.

Interrupt Enable Register (IER):

76543210
7 : set/clear (reads as "1")

0 : disable interrupts corresponding to bits set
1 : enable interrupts corresponding to bits set

6 : T1
5 : T2

4 : CB1
3 : CB2

2 : SR
1 : CA1

0 : CA2

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.22 Developer Manual 59

2.22 Developer Manual

2.22.1 Detailed Description

The Rulbus Device Library contains two groups of functions:

• general library functions,Rulbus DLL Interface

• Rulbus module related functions, for exampleRB8510 12-bit DAC

When you want to develop a driver for a Rulbus module, please first readHow to Develop a Rulbus Device
Driver.

When you want to study the implementation of a specific Rulbus module, look up its reference documen-
tation page by Rulbus number in theRulbus Device Class Library.

Modules

• How to Develop a Rulbus Device Driver

open – use – close.

• Rulbus DLL Implementation

Rulbus DLL implementation.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

60 Rulbus Device Library for Microsoft Windows Module Documentation

2.23 How to Develop a Rulbus Device Driver

How to Develop a Rulbus Device Driver A driver for a Rulbus device consists of the following parts:

• a C-language application programming interface (API) in the Rulbus Device Library, RDL (this
library)

• a C++ class for the device in the Rulbus Device Class Library (RDCL, seethere)

The C-language API is the DLL’s interface to the actual Rulbus Device objects in the DLL.

The C-language API for a Rulbus module consists of three types of functions:

• a function toopenthe device

• functions tousethe device

• a function toclosethe device

The protypes for the programming interface functions of all Rulbus modules are located in filerulbus.h ,
whereas the implementation of these functions are placed in a separate file for each Rulbus module, named
rbyydd_name.cpp, likerb8510_dac12.cpp .

The following sections show several API-functions for the 12-bit DAC module, RB8510.

open

extern "C" EXPORT int32 RDL_API rb8510_dac12_open(int32 * pHandle, CCstr name)
{

return RulbusDevice_open(pHandle, name);
}

use - obtain a value

extern "C" EXPORT int32 RDL_API rb8510_dac12_getVoltage(int32 handle, float32 * pVoltage)
{

try { * pVoltage = to_rb8510(TheRulbusDeviceList::instance().get(handle)).voltage(); }
catch (...) { return 1; }

return 0;
}

use - set a value

extern "C" EXPORT int32 RDL_API rb8510_dac12_setVoltage(int32 handle, float32 voltage)
{

try { to_rb8510(TheRulbusDeviceList::instance().get(handle)).setVoltage(voltage); }
catch (...) { return 1; }

return 0;
}

close

extern "C" EXPORT int32 RDL_API rb8510_dac12_close(int32 handle)
{

return RulbusDevice_close(handle);
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

2.23 How to Develop a Rulbus Device Driver 61

There are several things worth to mention here.

A Rulbus device is accessed via a handle, a number. This handle is obtained by the call to open and it is the
link to the actual Rulbus device object. The handle–device object relation is maintained byTheRulbus-
DeviceList , of which there is and can be only one in the DLL (hence theThe).

Further, the C++ style error handling through exceptions of the Rulbus Device Class Library is tranformed
here to an error return value. This is the usual mechanism to report errors in for example LabVIEW. More
information on an error can be obtained withrdl_getLastError().

It is also interesting to note the dual purpose ofto_rb8510():

• enable the protection of the Rulbus device (see classRulbusDeviceProxyin the RDCL)

• change the more general type RulbusDevice collected inTheRulbusDeviceListto the specific type
RB8510_Dac12

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

62 Rulbus Device Library for Microsoft Windows Module Documentation

2.24 Rulbus DLL Implementation

2.24.1 Detailed Description

Functions

• int __rdl_initialize()

initialize without exception handling; used byrdl_initialize(), DllMain().

• int __rdl_finalize()

finalize without exception handling; used byrdl_finalize(), DllMain(); do nothing: another process may be
using it (do not close global semaphores!); maybe use shared data in the future (see CreateFileMapping()).

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

Chapter 3

Rulbus Device Library for Microsoft
Windows Directory Documentation

3.1 H:/myprojects/bf/prj/rulbus-rdl/librdl/src/ Directory Reference

Files

• file rb8506_pport.cpp
• file rb8506_sifu.cpp
• file rb8509_adc12.cpp
• file rb8510_dac12.cpp
• file rb8513_timebase.cpp
• file rb8514_delay.cpp
• file rb8515_clock.cpp
• file rb8905_adc12.cpp
• file rb9005_amplifier.cpp
• file rb9603_monochromator.cpp
• file rulbus-types.h
• file Rulbus.cpp
• file rulbus.h
• file sources.inc
• file version.h

64 Rulbus Device Library for Microsoft Windows Directory Documentation

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

Chapter 4

Rulbus Device Library for Microsoft
Windows Example Documentation

4.1 dac.cpp

This is an example that shows how the RB8510 12-bit DAC may be used.

/ *
* dac.cpp - generate a staircase voltage.

*
* compile: bcc32 dac.cpp rulbus.lib

* /

#include <stdio.h> // for printf() etc.
#include <stdlib.h> // for strtol()
#include <windows.h> // for Sleep()
#include "rulbus.h" // rulbus interface

static int usage(); // print program usage, return EXIT_FAILURE
static int error(); // print error, return EXIT_FAILURE

/ *
* main - handle commandline arguments and generate staircase voltage on DAC.

* /

int main(int argc, char * argv[])
{

/ *
* handle commandline arguments:

* /

if (argc < 2)
return usage();

/ *
* the name on the commandline must correspond to the name of a 12-bit

* DAC in the Rulbus device configuration file, typically rulbus.conf.

* /

char * name = argv[1];

/ *
* open the DAC:

* /

66 Rulbus Device Library for Microsoft Windows Example Documentation

int32 handle;
if (rb8510_dac12_open(&handle, name))

return error();

/ *
* generate 11 one volt steps, one per second:

*
* Note that the last step generates a RulbusRangeError, because the

* voltage is outside [-10.235 .. +10.24 V].

* /

for (int i = 0; i <= 11; i++)
{

fprintf(stdout, "[%d]", i);

if (rb8510_dac12_setVoltage(handle, i))
return error();

Sleep(1000); // delay one second
}

/ *
* close the DAC:

* /

if (rb8510_dac12_close(handle))
return error();

return EXIT_SUCCESS;
}

/ *
* usage - print program usage.

* /

static int usage()
{

fprintf(stdout, "Usage: dac device-name\n");
return EXIT_FAILURE;

}

/ *
* error - retrieve and print Rulbus error.

* /

static int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
fprintf(stdout, "%s\n", msg);

return EXIT_FAILURE;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.2 error.cpp 67

4.2 error.cpp

This is an example of how you can use functionrdl_getLastError().

/ *
* error - retrieve and print Rulbus error.

* /

int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
fprintf(stdout, "%s\n", msg);

return 1;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

68 Rulbus Device Library for Microsoft Windows Example Documentation

4.3 pattern.cpp

This example shows how you may write a data pattern to the Rulbus, using the general interface functions.

/ *
* pattern - write a data pattern to the Rulbus.

* /

#include "rulbus.h" // header
#include <stdio.h> // for fprintf()
#include <stdlib.h> // for EXIT_SUCCESS
#include <conio.h> // for kbhit()

int error() { return EXIT_FAILURE; }

int main()
{

int32 pattern = 0x5E; // test pattern
int32 rack = 0; // rulbus rack number
int32 addr = 0; // rulbus base address
int32 offset = 0x12; // rulbus address offset
int32 handle = 0; // handle to generic rulbus device

// open the generic rulbus device
if (RulbusDevice_open(&handle, "Rulbus-test-device"))

return error();

RulbusDevice_getRack (handle, &rack);
RulbusDevice_getAddress(handle, &addr);

fprintf(stdout, "Writing [%d:0x%02X] <- 0x%02X\n", rack, addr + offset, pattern);
fprintf(stderr, "\nPress a key to stop...");

while(!kbhit()) // write pattern until a key is pressed
if (0 > RulbusDevice_putByte(handle, offset, pattern));

return error();

(void) getch(); // eat character

if (RulbusDevice_close(handle))
return error(); // close the generic rulbus device

return EXIT_SUCCESS;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.4 pport.cpp 69

4.4 pport.cpp

This is an example that shows how the RB8506 dual parallel interface (PIA/VIA) may be used.

/ *
* pport.cpp - switch a LED on and off, a parallel interface demonstration.

*
* The switch is connected to PB3 of parallel interface, Pia 2,

* the LED is connected to PB0.

*
* The program continuously reads the switch and puts the LED on

* when the switch is closed and puts the LED off when the switch

* is open. Note the inverted logic of the switch (pull-up) as

* well as of the LED (pulled down).

*
* +5V parallel interface +5V

* + +------------+ +

* | | pia2 | \\ |

* +---===---+---| PB3 PB0 |---|<|---===---+

* / | | |

* +---/ ---+ +------------+

* | switch LED

* ---

*
* The program uses two methods:

* 1. mask: read and set the i/o-pins by reading and writing port B

* 2. line: read and set the i/o-pins by reading and wrting a single line

*
* The Rulbus configuration file must define the port as "pport" at address 0x94:

*
* rack "a rack" {

* rb8506_pia "pport" {

* address = 0x94;

* }

* }

*
* Compile: bcc32 par.cpp rulbus.lib

* /

#include "rulbus.h"
#include <stdio.h> // for printf()
#include <conio.h> // for kbhit(), getch()
#include <windows.h> // for Sleep()

enum Pin { pin0, pin1, pin2, pin3, pin4, pin5, pin6, pin7, };

const char * portName = "pport"; // the name in rulbus.conf

const Pin pinLED = pin0; // the LED is at PB0
const Pin pinSwitch = pin3; // the switch is at PB4

const char * portLED = "PB"; // for port functions
const char * portSwitch = "PB";

const char * lineLED = "PB0"; // for line functions
const char * lineSwitch = "PB3";

const int rack = 0;
const int address = 0x94; // this is the parallel interface, Pia 2

inline int mask(int pin) { return 1 << pin; }

inline int tstbit(int32 byte, int pin) { return (byte & mask(pin)) != 0; }
inline int clrbit(int32& byte, int pin) { return byte &= ~mask(pin); }
inline int setbit(int32& byte, int pin) { return byte |= mask(pin); }
inline int xorbit(int32& byte, int pin) { return byte ^= mask(pin); }

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

70 Rulbus Device Library for Microsoft Windows Example Documentation

static void setPortDirection(int handle);
static void setLineDirection(int handle);
static void switchLED_mask (int handle);
static void switchLED_line (int handle);

/ *
* the program

* /

int main()
{

printf("Switch a LED on and off, a parallel interface demonstration.");

int32 handle;
rb8506_pport_open(&handle, portName);

// using port functions:

printf("\nsetting port direction...");
setPortDirection(handle);

printf("\nusing port data with bitmasks; press a key to contine...");
switchLED_mask(handle);

// using line functions:

printf("\nsetting line direction...");
setLineDirection(handle);

printf("\nusing single line functions; press a key to contine...");
switchLED_line(handle);

printf("\n");

return rb8506_pport_close(handle);
}

//--- solution using port-i/o with bitmasks

/ *
* Set data direction, using bitmasks.

* /

static void setPortDirection(int handle)
{

int32 dataSwitch, dataLED;
rb8506_pport_getPortDir(handle, portSwitch, &dataSwitch);
rb8506_pport_getPortDir(handle, portLED , &dataLED);

rb8506_pport_setPortDir(handle, portSwitch, dataSwitch & ~mask(pinSwitch));
rb8506_pport_setPortDir(handle, portLED , dataLED | mask(pinLED));

}

/ *
* Read the switch and control the LED using bit-masks.

* /

static void switchLED_mask(int handle)
{

while (!kbhit())
{

int32 dataSwitch, dataLED;
rb8506_pport_getPortData(handle, portSwitch, &dataSwitch);
rb8506_pport_getPortData(handle, portLED , &dataLED);

if (tstbit(dataSwitch, pinSwitch)) setbit(dataLED, pinLED);

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.4 pport.cpp 71

else clrbit(dataLED, pinLED);

rb8506_pport_setPortData(handle, portLED, dataLED);

Sleep(10);
}

(void) getch();
}

//--- solution using line-i/o

/ *
* Set data direction, using line-functions.

* /

static void setLineDirection(int handle)
{

rb8506_pport_setLineDir(handle, lineSwitch, ’i’);
rb8506_pport_setLineDir(handle, lineLED , ’o’);

}

/ *
* Read the switch and control the LED using single line i/o-functions.

* /

static void switchLED_line(int handle)
{

while (!kbhit())
{

int32 switchOpen;

rb8506_pport_getLineLevel(handle, lineSwitch, &switchOpen);
rb8506_pport_setLineLevel(handle, lineLED , switchOpen);

Sleep(10);
}

(void) getch();
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

72 Rulbus Device Library for Microsoft Windows Example Documentation

4.5 rulbus.conf

This example shows what a Rulbus configuration file may look like.

/ *
* rulbus.conf - Rulbus rack and cards configuration file.

*
* This file is part of the Rulbus Device Class Library (RDCL).

*
* Copyright (C) 2003-2004, Leiden University.

*
* This library is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* The library is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with mngdriver; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*
* $Id: rulbus.conf 19 2005-04-06 06:26:31Z moene $

* /

/ *
* //

* // small example rulbus.conf:

* //

*
* rack "toprack"

* {

* address = 7 // this rack has address 7

* rb8509_adc12 "adc" // uses defaults

* rb8509_dac12 "dac-ch0" // uses defaults

* rb8509_dac12 "dac-ch1" { address = 0xD2 } // address specified

* }

*
* rack "bottomrack"

* {

* address = 8 // this rack has address 8

* rb8515_clock "clock" { } // uses defaults

* rb8514_delay "delay0" { } // uses defaults

* rb8514_delay "delay1" { address = 0xA4 } // address specified

* }

* /

/ *
* keywords (case sensitive):

*
* - rack

* - rb_generic

* - rb8506_pia

* - rb8506_sifu

* - rb8506_via

* - rb8509_adc12

* - rb8510_dac12

* - rb8513_timebase

* - rb8514_delay

* - rb8515_clock

* - rb8905_adc12

* - rb9005_amplifier

* - rb9603_monochromator

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.5 rulbus.conf 73

*
* - address (all cards)

* - bipolar (rb8509_adc12, rb8510_dac12)

* - has_ext_trigger (rb8509_adc12)

* - intr_delay (rb8514_delay)

* - num_channels (rb8509_adc12)

* - volt_per_bit (rb8509_adc12, rb8510_dac12)

*
* - false, no

* - true, yes

*
* - [fpnumkMGT] characters used as suffix on a number (unit) have the

* following meaning

*
* sfx | meaning

* ----+-------------

* f | femto 1e-15

* p | femto 1e-12

* n | pico 1e-9

* u | micro 1e-6

* m | milli 1e-3

* k | kilo 1e+3

* M | mega 1e+6

* G | giga 1e+9

* T | tera 1e+12

* /

/ *
* Rulbus rack address

*
* The address of a Rulbus rack can be set via a 4-bit DIP-switch on its

* rear-side.

*
*
* Secondary Address Secondary Address

* 1 0 1 0

* weight +------+ bit weight +------+ bit

* 1 | . o | DS 0 1 | o . | DS 0

* 2 | . o | DS 1 2 | o . | DS 1

* 4 | . o | DS 2 4 | o . | DS 2

* 8 | . o | DS 3 8 | o . | DS 3

* +------+ +------+

*
* 0: 0 * 8 + 0* 4 + 0* 2 + 0* 1 15: 1 * 8 + 1* 4 + 1* 2 + 1* 1

*
*
* So there are 16 addresses to select from [0..0xF].

*
* Address 15 (0xF) is a special address: when a Rulbus rack has its

* DIP-switch set to 15, it is always selected, no matter what the

* computer tells the rack-selector.

*
* Please specify the DIP-switch setting for the address in a rack’s

* declaration.

*
* When you do not specify a rack address it will be 0xF.

* /

rack "top" = // this is a line comment, the ’//’ starts it
{

address = 3 // the required rack address [0..0xF]

rb8506_pia "pport" // the simplest card definition, using default properties
{

address = 0x94;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

74 Rulbus Device Library for Microsoft Windows Example Documentation

rb8509_adc12 "adc12" = // the most verbose card definition (with ’=’ and ’;’)
{ // the initializer

address = 0xC0; // the card address property

has_ext_trigger = false // or: no; no external trigger input on front
num_channels = 8; // or: 4 on some modules
bipolar = true; // or: yes
volt_per_bit = 5e-3; // or: 5m, or 5 m

}; // end of initializer

rb8510_dac12 "dac12-ch0" // the simplest card definition with initializer
{
}

rb8510_dac12 "dac12-ch1" =
{

address = 0xD2
bipolar = true
volt_per_bit = 5 m

}

rb8514_delay "delay0" =
{

/ * address = 0xA0 * /
}

rb8514_delay "delay1" =
{

address = 0xA4
intr_delay = 50 n // 50 ns intrinsic delay

}

rb8515_clock "clock1"; // using defaults
}

/ *
* end of file

* /

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.6 run-daccs.cmd 75

4.6 run-daccs.cmd

client-server thread example

The following example shows that the same DAC channel, named "dac-ch0", can be shared among two
threads of the same process.

Please read the output the test produces.

Run-daccs - setup environment to use .\rulbus.conf, run daccs.

Using RULBUS=isa

DacCS 1.0 (22 Jan 2004) Use Rulbus DAC from a client and a server thread.

This program creates a server thread and a client thread.

Server: generate a squarewave on DAC channel 0 [data 1000,3000].
Client: read the data from DAC channel 0 and check its values;

also copy data read to DAC channel 1.

The server thread is intentionally started somewhat later than
the client thread to show an error report from the latter.

ISA Rulbus Interface at [0x200], using CanIO port I/O

opened Rulbus device ’dac-ch0’ at [0:0xD0]
opened Rulbus device ’dac-ch1’ at [0:0xD2]

creating thread for server
creating thread for client

Press a key to stop...

client: reading data from Rulbus device ’dac-ch0’ at [0:0xD0]
client: copying data to Rulbus device ’dac-ch1’ at [0:0xD2]
client: dac handle 0 data 1234 not in [1000,3000]
client: dac handle 0 data 1234 not in [1000,3000]
server: write squarewave on Rulbus device ’dac-ch0’ at [0:0xD0]

Terminating...
prompt>

Here is the Rulbus configuration file used.

dac client--server test

rack "top"
{

address = 0

rb8510_dac12 "dac-ch0" { address = 0xD0 }
rb8510_dac12 "dac-ch1" { address = 0xD2 }

}

The C++ source of the program.

/ *
* daccs.cpp - dac client-server.

*
* compile: bcc32 -P -q -tWC -tWR -tWM -I..\src .\daccs.cpp ..\bin\rulbus.lib

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

76 Rulbus Device Library for Microsoft Windows Example Documentation

* /

#include <iostream> // for std::cout, std::cerr
#include <conio.h> // for kbhit()
#include <windows.h> // for DWORD HANDLE, Sleep()

#include "rulbus.h" // for rb8510_dac12_open() etc.

namespace ClientServer
{

const char * title = "DacCS 1.0 (22 Jan 2004) Use Rulbus DAC from a client and a server thread.\n";

int threads ();
HANDLE mkThread(const char * msg, DWORD WINAPI (* ThreadFunc)(LPVOID), int32 * pHandle);
DWORD WINAPI client (LPVOID arg);
DWORD WINAPI server (LPVOID arg);
int error ();

volatile bool runthread = true; // true while threads should run

const int NoCode = 1234; // DAC ’no’ code
const int LoCode = 1000; // DAC lower code
const int HiCode = 3000; // DAC higher code

/ *
* Rulbus address tuple for channel 0 and 1

* /

struct Tuple
{

int32 dac0;
int32 dac1;

};

#pragma argsused
int main(int argc, char * argv[])
{

std::cout << title << std::endl;

return threads();
}

int threads()
{

std::cout <<
"This program creates a server thread and a client thread.\n"
"\n"
"Server: generate a squarewave on DAC channel 0 [data " << LoCode << ’,’ << HiCode << "].\n"
"Client: read the data from DAC channel 0 and check its values;\n"
" also copy data read to DAC channel 1.\n"
"\n"
"The server thread is intentionally started somewhat later than\n"
"the client thread to show an error report from the latter.\n" << std::endl;

/ *
* report on Rulbus Interface:

* /

rdl_printRulbusInterface();

/ *
* open two DAC channels:

* /

Tuple tuple;

if (rb8510_dac12_open(&tuple.dac0, "dac-ch0") ||

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.6 run-daccs.cmd 77

rb8510_dac12_open(&tuple.dac1, "dac-ch1"))
{

return error();
}

std::cerr << "opened "; RulbusDevice_print(tuple.dac0);
std::cerr << "opened "; RulbusDevice_print(tuple.dac1);
std::cerr << std::endl;

/ *
* initialize DAC outputs to be different from server output:

* /

rb8510_dac12_setValue(tuple.dac0, NoCode);
rb8510_dac12_setValue(tuple.dac1, NoCode);

/ *
* create and resume client and server threads;

* intentionally resume the server thread somewhat later

* to notice the error report from the client thread.

* /

HANDLE thread0 = mkThread("server", server, reinterpret_cast<LONG * >(&tuple));
HANDLE thread1 = mkThread("client", client, reinterpret_cast<LONG * >(&tuple));

std::cerr << "\nPress a key to stop...\n" << std::endl;

ResumeThread(thread1); Sleep(2000);
ResumeThread(thread0);

/ *
* wait for key pressed; eat character:

* /

while (!kbhit())
Sleep(10);

(void) getch();

/ *
* stop and remove threads and close DACs:

* /

std::cerr << "\nTerminating..." << std::endl;

runthread = 0; Sleep(10);

CloseHandle(thread0);
CloseHandle(thread1);

if (rb8510_dac12_close(tuple.dac1) ||
rb8510_dac12_close(tuple.dac0))

{
return error();

}

return EXIT_SUCCESS;
}

HANDLE mkThread(const char * msg, DWORD WINAPI (* ThreadFunc)(LPVOID), int32 * pTuple)
{

std::cerr << "creating thread for " << msg << std::endl;

DWORD id;

return CreateThread(
NULL, // pointer to thread security attributes

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

78 Rulbus Device Library for Microsoft Windows Example Documentation

0, // initial thread stack size, in bytes
ThreadFunc, // pointer to thread function
pTuple, // argument for new thread
CREATE_SUSPENDED, // creation flags
&id // pointer to returned thread identifier

);
}

DWORD WINAPI server(LPVOID arg)
{

int32 dac0 = reinterpret_cast<Tuple * >(arg)->dac0;

std::cerr << "server: write squarewave on "; RulbusDevice_print(dac0);

while (runthread)
{

rb8510_dac12_setValue(dac0, LoCode); Sleep(0);
rb8510_dac12_setValue(dac0, HiCode); Sleep(0);

}

return 0;
}

DWORD WINAPI client(LPVOID arg)
{

int32 dac0 = reinterpret_cast<Tuple * >(arg)->dac0;
int32 dac1 = reinterpret_cast<Tuple * >(arg)->dac1;

std::cerr << "client: reading data from "; RulbusDevice_print(dac0);
std::cerr << "client: copying data to "; RulbusDevice_print(dac1);

while (runthread)
{

int32 n;

if (rb8510_dac12_getValue(dac0, &n) ||
rb8510_dac12_setValue(dac1, n))

{
return error();

}

if (n != LoCode && n!= HiCode)
{

std::cerr << "client: dac handle " << dac0 << " data " << n << " not in [" << LoCode << ’,’ << HiCode << "]" << std::endl;
Sleep (1000);

}
else
{

// do nothing
// std::cerr << n << " "; Sleep(300);

}

Sleep(0);
}

return 0;
}

int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
std::cerr << msg << std::endl;

return EXIT_FAILURE;
}

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.6 run-daccs.cmd 79

} // namespace ClientServer

/ *
* End of file

* /

This is the batch command file used to invoke the program.

@echo off
rem
rem run-daccs.bat - setup environment to use .\run-daccs.conf, run daccs.
rem

cls
echo Run-daccs - setup environment to use .\run-daccs.conf, run daccs.
echo.

set RULBUS.ORG=%RULBUS%
set RULBUS_CONFIG_FILE.ORG=%RULBUS_CONFIG_FILE%

:set RULBUS=epp,0x378;nocheck
set RULBUS=isa

echo Using RULBUS=%RULBUS%
echo ___
echo.

set RULBUS_CONFIG_FILE=run-daccs.conf

copy ..\bin\rulbus.dll . >nul

daccs

rem
rem restore environment:
rem

set RULBUS=%RULBUS.ORG%
set RULBUS.ORG=

set RULBUS_CONFIG_FILE=%RULBUS_CONFIG_FILE.ORG%
set RULBUS_CONFIG_FILE.ORG=

rem
rem end of file
rem

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

80 Rulbus Device Library for Microsoft Windows Example Documentation

4.7 run-daccs2.cmd

client-server process example

The following example shows that the same DAC channel, named "dac-ch0", cannot be shared among two
processes: the client process cannot see the changes that the server process makes to the DAC channel.

Please read the output the test produces.

Server process output.

DacServer 1.0 (22 Jan 2004) Use Rulbus DAC from client and server processes.

This program generates a squarewave on DAC channel 0 [voltage -5,5 V].

ISA Rulbus Interface at [0x200], using CanIO port I/O

opened Rulbus device ’dac-ch0’ at [0:0xD0]

[5][-5][5][-5]

Client process output.

DacClient 1.0 (22 Jan 2004) Use Rulbus DAC from client and server processes.

This program reads the voltage from DAC channel 0 [expecting voltage -5,5 V],
and copies the voltage to DAC channel 1.

ISA Rulbus Interface at [0x200], using CanIO port I/O

opened Rulbus device ’dac-ch0’ at [0:0xD0]
opened Rulbus device ’dac-ch1’ at [0:0xD2]

[0][0][0][0][0][0]

Here is the Rulbus configuration file used.

dac client--server test

rack "top"
{

address = 0

rb8510_dac12 "dac-ch0" { address = 0xD0 }
rb8510_dac12 "dac-ch1" { address = 0xD2 }

}

The C++ source of the server program.

/ *
* dacserver.cpp - generate alternating -5V, +5V on DAC channel 0.

* /

#include "rulbus.h"
#include <iostream>

/ *
* the Server namespace

* /

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.7 run-daccs2.cmd 81

namespace Server
{

const char * title = "DacServer 1.0 (22 Jan 2004) Use Rulbus DAC from client and server processes.\n";

const double LoVoltage = -5.0; // DAC lower voltage
const double HiVoltage = +5.0; // DAC higher voltage

int server(int handle);
int error ();

/ *
* the program

* /

int main()
{

std::cout <<
title <<
"\n"
"This program generates a squarewave on DAC channel 0 [voltage " <<

LoVoltage << ’,’ << HiVoltage << " V].\n" << std::endl;

/ *
* report on Rulbus Interface:

* /

rdl_printRulbusInterface();

/ *
* open DAC channel 0:

* /

int32 dac0;
float32 vpb0;

if (rb8510_dac12_open(&dac0, "dac-ch0") ||
rb8510_dac12_getVoltperbit(dac0, &vpb0))

{
return error();

}

std::cerr << "opened "; RulbusDevice_print(dac0);
std::cerr << std::endl;

return server(dac0);
}

/ *
* server -

* /

int server(int handle)
{

while(true)
{

float32 v;

Sleep(2000);

if (rb8510_dac12_setVoltage(handle, +5.0) ||
rb8510_dac12_getVoltage(handle, &v))
return error();

std::cerr << "[" << v << "]";

Sleep(2000);

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

82 Rulbus Device Library for Microsoft Windows Example Documentation

if (rb8510_dac12_setVoltage(handle, -5.0) ||
rb8510_dac12_getVoltage(handle, &v))
return error();

std::cerr << "[" << v << "]";
}

//return EXIT_SUCCESS;
}

/ *
* error - retrieve and print Rulbus error.

* /

int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
std::cerr << msg << std::endl;

return EXIT_FAILURE;
}

} // namespace Server

/ *
* end of file

* /

The C++ source of the client program.

/ *
* dacclient.cpp - read voltage from DAC channel 0, copy it to DAC channel 1.

* /

#include "rulbus.h"
#include <iostream>

/ *
* the Client namespace

* /

namespace Client
{

const char * title = "DacClient 1.0 (22 Jan 2004) Use Rulbus DAC from client and server processes.\n";

const double LoVoltage = -5.0; // DAC lower voltage
const double HiVoltage = +5.0; // DAC higher voltage

int client(int handle0, int handle1);
int error ();

/ *
* the program

* /

int main()
{

std::cout <<
title <<
"\n"
"This program reads the voltage from DAC channel 0 [expecting voltage " <<

LoVoltage << ’,’ << HiVoltage << " V],\n"
"and copies the voltage to DAC channel 1.\n" << std::endl;

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

4.7 run-daccs2.cmd 83

/ *
* report on Rulbus Interface:

* /

rdl_printRulbusInterface();

/ *
* open DAC channel 0:

* /

int32 dac0, dac1;
float32 vpb0;

if (rb8510_dac12_open(&dac0, "dac-ch0") ||
rb8510_dac12_open(&dac1, "dac-ch1") ||
rb8510_dac12_getVoltperbit(dac0, &vpb0))

{
return error();

}

std::cerr << "opened "; RulbusDevice_print(dac0);
std::cerr << "opened "; RulbusDevice_print(dac1);
std::cerr << std::endl;

return client(dac0, dac1);
}

/ *
* client - read DAC channel0 and copy to DAC channel 1

* /

int client(int handle0, int handle1)
{

while(true)
{

float32 v;

if (rb8510_dac12_getVoltage(handle0, &v) ||
rb8510_dac12_setVoltage(handle1, v))

{
return error();

}

std::cerr << "[" << v << "]"; Sleep(750);
}

//return EXIT_SUCCESS;
}

/ *
* error - retrieve and print Rulbus error.

* /

int error()
{

const int len = 100; char msg[len];

rdl_getLastError(msg, len);
std::cerr << msg << std::endl;

return EXIT_FAILURE;
}

} // namespace Client

/ *

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

84 Rulbus Device Library for Microsoft Windows Example Documentation

* end of file

* /

This is the batch command file used to invoke the client and server programs.

@echo off
rem
rem run-daccs2.bat - setup environment to use .\run-daccs.conf, run daccs.
rem

cls
echo Run-daccs2 - setup environment to use .\run-daccs.conf, run dacclient and -server.
echo.

set RULBUS.ORG=%RULBUS%
set RULBUS_CONFIG_FILE.ORG=%RULBUS_CONFIG_FILE%

:set RULBUS=epp,0x378;nocheck
set RULBUS=isa

echo Using RULBUS=%RULBUS%
echo ___
echo.

set RULBUS_CONFIG_FILE=run-daccs.conf

copy ..\bin\rulbus.dll . >nul

start dacclient
start dacserver

rem
rem restore environment:
rem

set RULBUS=%RULBUS.ORG%
set RULBUS.ORG=

set RULBUS_CONFIG_FILE=%RULBUS_CONFIG_FILE.ORG%
set RULBUS_CONFIG_FILE.ORG=

rem
rem end of file
rem

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

Chapter 5

Rulbus Device Library for Microsoft
Windows Page Documentation

5.1 Acknowledgements

It was Henk Klein Wolterink’s vision in 1985 to design the Rulbus architecture and bridge the worlds
of different microprocessors that existed at the various electronic departments of Leiden University (then
Rijksuniversiteit Leiden) and at the same time bring the departments closer to each other by means of the
meetings held to achieve the goal. That Rulbus is still actively used is a clear indicator of the quality of his
vision. So is the fact that the University now has a united electronic department. Many thanks. In 1999
Henk Klein Wolterink established Applied Instruments [APPLINSTR].

Jens Thoms Törring designed a Rulbus configuration file for the Rulbus support in his fsc2 [FSC2] spec-
trometer application. Thanks for his idea and support to create a common format for it after I copied and
altered it for the RDL.

Thanks to Joris Slob who reported ‘strange behaviour’ of various modules that turned out to be real bugs.

86 Rulbus Device Library for Microsoft Windows Page Documentation

5.2 References

URL catalog

[APPLINSTR] Henk Klein Wolterink’s Applied Instruments.

http://www.applied-instruments.com/

[BCBDEVDLL] Harold Howe’s Creating DLLs in BCB that can be used from Visual C++.

http://www.bcbdev.com/articles/bcbdll.htm

[FSC2] Jens Thoms Törring’s software package for remote control of spectrometers.

http://www.physik.fu-berlin.de/ ∼toerring/fsc2.phtml

[IEEE1284] IEEE Standard Signaling Method for a Bidirectional Parallel Peripheral Interface for Per-
sonal Computers (1284-2000).

http://www.ieee.org/

[MSDLL] Microsoft. Dynamic-Link Libraries.

http://msdn.microsoft.com/library/en-us/dllproc/base/dynamic_-
link_libraries.asp

[RULBUS] Leiden University. Rulbus specifications and modules.

http://www.eld.LeidenUniv.nl/ ∼moene/rulbus/

Book references

[Gamma et al., 1995] Erick Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.De-
sign Patterns; Elements of Reusable Object-Oriented Software. Reading, Massachusetts: Addison-
Wesley. ISBN 0-201-63361-2.

[Kernighan & Pike, 1999] Brian W. Kernighan and Rob Pike. 1999.The Practice of Programming.
Reading, Massachusetts: Addison-Wesley. ISBN 0-201-61586-X.

[Stroustrup, 2000] Bjarne Stroustrup. 2000.The C++ Programming Language: Special Edition, 3/E.
Boston: Addison Wesley Professional. ISBN 0-201-70073-5.

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

http://www.applied-instruments.com/
http://www.bcbdev.com/articles/bcbdll.htm
http://www.physik.fu-berlin.de/~toerring/fsc2.phtml
http://www.ieee.org/
http://msdn.microsoft.com/library/en-us/dllproc/base/dynamic_link_libraries.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/dynamic_link_libraries.asp
http://www.eld.LeidenUniv.nl/~moene/rulbus/

5.3 Todo List 87

5.3 Todo List

Group rdl_library_compilers find out how to use rulbus.dll with LabWindows/CVI

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

Index

A
Address. seeRulbus Address
Amplifier. seeRB9005 Instrumentation Amplifier
Analog to digital conversion. seeConversion

C
C++ Programming Language, The86
Card. seeRulbus Module
Clock. seeRB8515 Clock for Time Delay
Compilers and the Rulbus Device Library15
Compiling a program

with Borland C++ 15
with GNU C 16
with LabWindows/CVI 16
with Visual C++ 16

Configuration File
seeRulbus Configuration File

Conversion
analog to digital. seeRB8509 12-bit ADC,

RB8905 12-bit ADC
digital to analog. seeRB8510 12-bit DAC

Creating a Program 9

D
Define Rulbus Interface 5, 6
Define Rulbus Modules 6
Defining Interface and Modules6
Developer Manual 59
Digital I/O. see RB8506 Parallel Interface,see

RB8506 SIFU
Digital to analog conversion.seeConversion
DllMain

rdl_rulbus_dll_interface 21

E
Enhanced Printer Port (EPP)

IEEE1284 standard 86
requirement 5

Environment Variable
see alsoSet Rulbus Environment

RULBUS 5, 6
RULBUS_CONFIG_FILE 7

EPP Rulbus Interface5
EPP. seeEnhanced Printer Port
Error Handling

description of 9
example of 10, 67

Example
of a small program 10
of client-server process80
of client-server thread 75
of error handling 10, 67
of Rulbus Configuration File (long) 72
of Rulbus Configuration File (short)6

F
Frequency

clock. seeRB8515 clock
interval time. seeRB8513 timebase

G
Generic Rulbus Device 24

H
H:/myprojects/bf/prj/rulbus-rdl/librdl/src/ Directory

Reference 63
How to Develop a Rulbus Device Driver60

I
IEEE1284 standard 86, see alsoEPP
Interface. seeRulbus Interface
ISA Rulbus Interface 5

K
Klein Wolterink, Henk 85, 86

L
License, RDL 1

M
Module. seeRulbus Module
Monochromator. see RB9603 Monochromator

Controller
Multitasking

description of 12
example of client-server process80
example of client-server thread75

Multithreading. seeMultitasking

P
Parallel Interface. seeRB8506 Parallel Interface,

seeRB8506 SIFU

INDEX 89

Peripheral. seeRulbus Module
PIA Motorola Peripheral Interface Adapter MC6821

55
Process. seeMultitasking
Programming

creating a program 9
The C++ Programming Language86

Properties
Rulbus 5
Rulbus Interface. seeRulbus Interface
Rulbus Module. seeRulbus Module
Rulbus Rack. seeRulbus Rack

R
Rack. seeRulbus Rack
RB8506 Parallel Interface26
RB8506 SIFU 30
RB8509 12-bit ADC 33
RB8510 12-bit DAC 36
RB8513 Timebase 38
RB8514 Time Delay 40
RB8515 Clock for Time Delay 43
RB8905 12-bit ADC 45
RB9005 Instrumentation Amplifier 49
RB9603 Monochromator Controller52
RDL License 1
rdl_finalize

rdl_rulbus_dll_interface 21
rdl_getLastError

rdl_rulbus_dll_interface 21
rdl_initialize

rdl_rulbus_dll_interface 22
rdl_printRulbusDeviceList

rdl_rulbus_dll_interface 22
rdl_printRulbusInterface

rdl_rulbus_dll_interface 22
rdl_rulbus_dll_interface

DllMain 21
rdl_finalize 21
rdl_getLastError 21
rdl_initialize 22
rdl_printRulbusDeviceList 22
rdl_printRulbusInterface 22
RulbusDevice_close 22
RulbusDevice_getByte 22
RulbusDevice_open 23
RulbusDevice_print 23
RulbusDevice_putByte 23

Reference Manual 17
Rulbus, introduction to 4
Rulbus – RijksUniversiteit Leiden BUS4
Rulbus Address

range 5
secondary 6

Rulbus Card. seeRulbus Module
Rulbus Configuration File

description of 6
long example of 72
short example of 6

Rulbus DLL Implementation 62
Rulbus DLL Interface 19
RULBUS Environment Variable

see alsoSet Rulbus Environment
definition of 5, 6

Rulbus Interface
address of 5, 6
definition of 5, 6
description of 5
EPP 5
introduction to 4
ISA 5

Rulbus Module
address of 6
description of 4
in configuration file 6
introduction to 4
properties of 6

Rulbus Properties 5
Rulbus Rack

address of 5, 6
description of 4
in configuration file 6

RULBUS_CONFIG_FILE
Environment Variable
see alsoSet Rulbus Environment

definition of 7
RulbusDevice_close

rdl_rulbus_dll_interface 22
RulbusDevice_getByte

rdl_rulbus_dll_interface 22
RulbusDevice_open

rdl_rulbus_dll_interface 23
RulbusDevice_print

rdl_rulbus_dll_interface 23
RulbusDevice_putByte

rdl_rulbus_dll_interface 23

S
Secondary Address.seeRulbus Address
Set Rulbus Environment7
Slob, Joris 85
Stroustrup, Bjarne 86

T
Thread. seeMultitasking
Threads and the Rulbus Device Library12
Time

delay. seeRB8514 delay

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

90 INDEX

interval. seeRB8513 timebase
Törring, Jens Thoms 85, 86

U
User Manual 3

V
VIA Rockwell Versatile Interface Adapater R6522

57
Voltage seeConversion

Generated on Wed Apr 6 08:59:18 2005 for Rulbus Device Library for Microsoft Windows by Doxygen

	Rulbus Device Library for Microsoft Windows Main Page
	Rulbus Device Library for Microsoft Windows Module Documentation
	User Manual
	Rulbus -- RijksUniversiteit Leiden BUS
	Defining Interface and Modules
	Creating a Program
	Threads and the Rulbus Device Library
	Compilers and the Rulbus Device Library
	Reference Manual
	Rulbus DLL Interface
	Generic Rulbus Device
	RB8506 Parallel Interface
	RB8506 SIFU
	RB8509 12-bit ADC
	RB8510 12-bit DAC
	RB8513 Timebase
	RB8514 Time Delay
	RB8515 Clock for Time Delay
	RB8905 12-bit ADC
	RB9005 Instrumentation Amplifier
	RB9603 Monochromator Controller
	PIA Motorola Peripheral Interface Adapter MC6821
	VIA Rockwell Versatile Interface Adapater R6522
	Developer Manual
	How to Develop a Rulbus Device Driver
	Rulbus DLL Implementation

	Rulbus Device Library for Microsoft Windows Directory Documentation
	H:/myprojects/bf/prj/rulbus-rdl/librdl/src/ Directory Reference

	Rulbus Device Library for Microsoft Windows Example Documentation
	dac.cpp
	error.cpp
	pattern.cpp
	pport.cpp
	rulbus.conf
	run-daccs.cmd
	run-daccs2.cmd

	Rulbus Device Library for Microsoft Windows Page Documentation
	Acknowledgements
	References
	Todo List

	Index

