Working Effectively with Legacy Code
By Michael C. Feathers

ACCU Mentored Developer Project, guided by Paul Grenyercccccooeviinenenenencnene. 1
Working Effectively with Legacy Code By Michael C. Feathers.........c.ccccocevevrinenncnennne. 1
Foreword * Ian Bruntlett, 8 JUNE 2011cceeouiieiieiiieiiecieceeee e e 3
Preface « Ian Bruntlett, 8 JUNE 2011cccuieuieiiiiieiicieceeeeeeeee ettt 3
Chapter 1: Changing Software * lan Bruntlett, 8 June 2011.........cccoeeceneenineennccinccenes 3
Chapter 2: Working with Feedback * Martin Moene, 20 June 2011cccccceerueveennenene. 4
Chapter 3: Sensing and Separation * Richard Barrett, 27 June 2011.......cccccceeveveerieeennenee. 8
Chapter 4: The Seam Model + Andrew McDonnell, 4 July 2011ccccceeverieiniiieeee 10
Chapter 5: Tools * Ken Duffill, 11 July 2011 ..c.coieiiiiiiiiiiiiee e 12
Chapter 6: I Don't Have Much Time and I Have to Change It

* John Penney, 17 JULY 2011 ..cc.ooiiiiiiiii e 13
Chapter 7: It takes forever to make a change * Ann Napier, 25 July 2011.......cccceeneneene 15
Chapter 8: How do I add a feature? * David Pol, 1 August 2011c..ccceeereeinieieieiennne 17

Chapter 9, I Can't Get This Class into a Test Harness * Matthew Jones, 8 August 2011 20
Chapter 10: I can't get this method into a test harness * Tim Barrass, 16 August 2011...24
Chapter 11: need to make a change * James Byatt, 22 August 2011.......ccceceeveereeieeenene 26
Chapter 12: I Need to make many changes in one area. Do I have to break

dependencies for all the classes involved? « Chris O'Dell, 29 August 2011 29
Chapter 13: I need to make a change, but I don't know that tests to write

* Joes Staal, 5 SEPLEMDET 2011ccueieieiiiiiecieeeeeeeeeeee ettt ens 31

Chapter 14: Dependencies on Libraries Are Killing Me

* David Sykes, 12 SePtember 2011......cc.ceiriiiiieieieieieeesee et 33
Chapter 15: My application is all API calls * Joes Staal, 20 September 2011..................... 34
Chapter 16: I Don't Understand the Code Well Enough to Change It

* Timothy Wright, 26 September 2011cccoeiiiiiiiieieieeece e 35
Chapter 17: My Application Has No Structure * Tim Penhey, 5 October 2011................ 37
Chapter 18: My test code is in the way * lan Bruntlett, 10 October 2011ccocu.e...... 38

Chapter 19: My Project Is Not Object-Oriented. How Do I Make Safe Changes?
* Martin Moene, 17 OCLODET 2011.......ccueviriiriirerinieiieeeteteetete ettt 39
Chapter 20: The Class Is Too Big and I Don't Want It To Get Any Bigger

* Richard Barrett, 24 OCtODEI 2011cocviieiiciiiciieeieceeeeee ettt e et 41

ACCU Mentored Working Effectively with Legacy Code
Developers Project

1 of 61

Chapter 21: I'm Changing the Same Code All Over the Place

* Nigel Evans, 31 OCtODET 2011cuiviiriiriiriiniiniieiieteteteeetee ettt 44
Chapter 22: I Need to Change a Monster Method and I Can’t Write Tests for It

« Andrew McDonnell, 7 NovembEer 2011ccoeovieeiieeiicieeeiieceeeeeee e 46
Chapter 23: How do I know that I'm not breaking anything

* Joes Staal, 17 NOVEMDET 2011.......cccuiiiiieiieciecieecee ettt et eaaeeaneas 50
Chapter 24: We Feel Overwhelmed, It Isn't Going to Get Any Better

* John Penney, 21 NOVEMDET 2011co.couiiiiriiiiiiiiiiiiceeec et 51
Chapter 25: Dependency-Breaking Techniques, part 1

* Matthew Jones, 28 NOVEMDET 2011cccvevuieiiieiiiieieciieieceese ettt senens 52
Chapter 25, Dependency-Breaking Techniques, part 2 * David Pol, 5 December 2011..56
Chapter 25, Dependency-Breaking Techniques, part 3

* Ann Napier, 12 DeCember 2011c.coiviriririeieieieeee ettt 59
Appendix * Tim Barrass, 19 JaNUATY 2011....cc.coerereriererereneeeeeeeeeetee et 61
ACCU Mentored Working Effectively with Legacy Code

Developers Project

2 of 61

Foreword -

The Foreward, by Robert C. Martin, considers the route from a programmer's first
experiences to being someone tasked to maintain legacy systems. He mentions that
the book discusses removing the “legacy” aspects of the system - i.e. “reversing the

»

rot .

Preface -

The Preface, by Michael C. Feathers, discusses “what is legacy code?” and decides
that it is “code without tests”.

Chapter 1: Changing Software

Chapter 1, “Changing Software”, lists four reasons to change software (Adding a
feature, Fixing a bug, improving the design and Optimising resource usage). The
final part of this chapter, “Putting it all together looks at these reasons and
discusses factors that change - Structure, New Functionality, Functionality and
Resource Usage. It concludes by discussing how programmers write “anti-
refactoring” code (my neologism) - e.g. adding code to an existing method instead
of a new method and how fear leads to big, unwieldy, classes developing over time
so that programmers are too scared of breaking things to do something like
breaking a big class into pieces.

ACCU Mentored Working Effectively with Legacy Code
Developers Project 3 of 61

Chapter 2: Working with Feedback -

This chapter motivates us to say "yes!" to unit testing as one of the most important
components of working with legacy code for the quick and localised feedback that

it provides. The chapter also gives us a feel of how to go about to change such code.

[like the author's conversational writing style. He also takes what's needed to
sketch a situation and to explain what's going on. A good example is the way the
author builds the case for unit testing in the first section. It talks about ways to
make changes in a system and ways of testing and it can be summarised as follows.

There are two primary ways to make changes in a system. The author calls them
Edit and Pray and Cover and Modify.

Great care, both before and after making the changes, is what typifies Edit and
Pray. However taking great care is not the same as being safe and effective. In
Cover and Modify we work with a safety net, or better still a cloak over the code
we're changing that protects us from bad changes to leak. Tests cover the code. Via
the tests we quickly learn if our changes were good or bad. With this feedback we
can make changes more carefully.

Funny, as I liked to describe my assembly programming for MC6805 micro-
controllers without using an in-circuit emulator as just that: "programming very
carefully”. Even so, I felt the need for detailed feedback so strongly that I at least
tested mathematical routines via an emulator. I think those must have been my
first unit(-like) tests. This was sometime in the late eighties.

After the two ways of making changes, we look at two ways of testing: testing to
attempt to show correctness[1] and testing to detect change.

In the first way of testing, tests are created after the software it tests and possibly
by other programmers. The feedback loop is large both in the amount of work
tested together for the first time and in its time scale. The second manner, also
called regression testing, is used to check that what worked in the past still works
now. Regression tests act as a software vise[2]: it lets us be in control of our work.

According to the author, regression tests are often done at the relatively high level
of the application. I wonder ifn't the kind of project and the branch you're working
in may make quite a difference in how far this statement is true.

A short story shows the ill effect of too high-level, too coarse-grained regression
tests combined with time delay in obtaining feedback. Although the tests tell
something is wrong, their coarse grain prevents us to see immediately what exactly
is wrong. The long time that elapses between change and feedback from the tests
make it difficult to act effectively.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

4 of 61

In a contrasting story we make a change to unclear code that is covered with unit
tests. First we refactor the code 1) to make it more clear, also for later readers that
may be ourselves, 2) to better understand it, and 3) to have more confidence in the
change we want to make. All these changes are supported by the existing unit tests
and tests that we add to verify new behaviour.

The author concludes that unit testing is one of the most important components in
legacy code work, because it gives feedback as you develop and it lets you refactor
with much more safety.

What is Unit Testing?

[think the author quite clearly expresses his ideas on what tests to consider unit
tests. At the same time he does not dumb down tests that do not fall in that
category. As with the term 'legacy code’, I'm happy to accept this as a working
definition for the book.

In unit testing we strive to test 'components' (individual functions, classes) in
isolation, independent from each other. If we test broader functional areas the tests
are more like integration test. These larger tests are also important but they have
problems with:

e Error localisation,

¢ Execution time and

e Coverage.

Thus good unit tests:
1. run fast, and
2. help us to localise problems.

For these reasons, a test is not a unit test if:

it talks to a database,

it communicates across a network,

it touches the filesystem,

you have special things to do to your environment to run it (e.g. edit a
configuration file).

AW oN o

Such non-unit tests often are worth writing using the unit test harness. However
make sure to be able to separate them from true unit tests so that you can run a set
of tests fast whenever you make changes.

Higher Level Testing

Testing at a higher level than that of a unit is also important, as it can pin down
behaviour for a set of classes at a time. Little more is said here, but in chapter 12 it
reappears as testing one level back.[3]

ACCU Mentored Working Effectively with Legacy Code
Developers Project

5 of 61

Test Coverings
An example that gives an idea of bringing code under test leads us to The Legacy
Code Dilemma:

When we change code, we should have tests in place. To put tests in place,
we have to change the code.

To test a component you must be able to instantiate it. As it is desirable to test
components in isolation, much of the work to make that possible involves breaking
dependencies on arguments, base classes, member objects. In some cases a class
can be replaced by an interface that you then implement specifically for the test.
Sometimes an involved argument can be replaced by a primitive parameter if that
conveys all the information required.

As the code is not yet covered by tests, the advise is to begin with relatively safe
refactorings and apply them very conservatively. Such changes can make code
uglier at first, but they do make (the initial) testing possible. Lateron when this
dependency-breaking code also has been covered by tests you have the opportunity
to heal that scar too.

I wonder if one class per file (or closely-related set of -) is a presumed precondition
to cover a class with a test.

The Legacy Code Change Algorithm

Changes we make to legacy code not only should bring functional changes, they
also should bring more and more code under test, so that working with the code
base becomes increasingly easy.

Here's a code-changing algorithm you can use:
1. Identify change points.

Find test points.

Break dependencies.

Write tests.

Make changes and refactor.

Vop W

Short explanations of these items follow and point us to relevant chapters in the
book. The next two chapters contain information on three critical concepts in
legacy work: sensing, separation and seams.

Closing Remarks

A good part of this review actually is a summary, which together with the
discussion forms a collective review. For me the summarising aspect is important
to easily see the main points and to make it possible to come back later and dive in
again (as with the PDF of [3]).

ACCU Mentored Working Effectively with Legacy Code
Developers Project 6 of 61

Notes
[1] Formulated as "testing to attempt to show correctness”, because tests can only
indicate the presence of errors, not their absence.

[2] I looked-up Vise at Dictionary.com: "any of various devices, usually having two
jaws that may be brought together or separated by means of a screw, lever, or
the like, used to hold an object firmly while work is being done on it." I like the
explicit mentioning of "while work is being done on it" in this version.

[3] In "Growing Object-Oriented Software" (GOOS), Steve Freeman and Nat Pryce
expand the sphere of testing to include acceptance testing, integration testing
and end-to-end testing as well as unit testing. GOOS was the subject of the
preceding ACCU mentored developers project. See
http://www.eld.leidenuniv.nl/~moene/accu/mentored-goos/GOOS-
ACCUMentoredDevelopersProject.pdf (gees/goos).

ACCU Mentored Working Effectively with Legacy Code
Developers Project 7 of 61

Chapter 3: Sensing and Separation

When first starting to develop using unit tests, or writing them to test existing
code, it is dependencies among classes that is the first cause of problems. An
introduction to breaking dependencies is the subject of this chapter.

Why do we want to break dependencies when putting tests in place? Michael gives
us two reasons: 'sensing' and 'separation’. When there is a dependency between
two or more classes, discovering a change in a class-under-test often means having
to use the other dependent classes - it's then not a 'unit' test. We break
dependencies so that we can 'sense' the effects of our unit test method calls to our
class-under-test, and so that we can run the unit test 'separately’ from the rest of
the application. Michael illustrates this nicely with an example.

Michael then asks which is the tougher: sensing or separation? Separation is the
subject of a number of techniques that we will learn about later in our studies, but
for sensing there is one primary tool, the subject of the remainder of the chapter...

Fake Collaborators

The gist of what we do here is this: when testing a piece of code, we fake the rest of
the code with which our code-under-test collaborates. In object-oriented software,
we call these fake objects. We fake the collaborators, so that we can sense the
effects of our test's actions through the fakes.

Michael explains this via the classic example of an application that includes a GUI:
say we have an input to the application, that input is processed, and some effect is
displayed on the GUI. Without the separation of responsibilities into distinct ares
of code, it is difficult to test, for example just the input processing. Identifying an
interface for the GUI code, and then writing a 'fake' GUI that implements that
interface, allows us to test just the input processing by 'sensing' the effects of the
test in our fake. This is illustrated in the text with a point-of-sale class in Java; the
example implementation shows the way that a fake collaborator is used when
writing a unit test.

There's a discussion concerning the two 'sides’ of a fake object: one side represents
the functionality that only the code under test will see, and the other side is for the
use of the code implementing the test only. This is a nice concept.

Having explained the benefits of fake objects, the author moves on to introduce
'mock’ objects. Mock objects are defined as being like fake objects, but performing
the test assertions internally. With plain fake objects, the test code uses the fake
object's functionality to detect some effect and compare that against the expected
effect. With mocks the comparison is done internally. This is a powerful technique,
but you can still do a lot with just fake objects.

In summary, I thought this was a good introductory chapter to breaking
dependencies by the use of, and rationale for, fake objects. I like the "sensing and

ACCU Mentored Working Effectively with Legacy Code
Developers Project

8 of 61

separation” and the "two-sides of a fake object" concepts; they'll be useful when
explaining this to others.

ACCU Mentored Working Effectively with Legacy Code
Developers Project by Michael C. Feathers 9 of 61

Chapter 4: The Seam Model -

The chapter begins saying there seems to be really only one way to end up with a
testable piece of software: write tests as you develop. So, I guess we can give up
now?

Alright, we can't give up. So how do we make untestable software testable? Unit
testing requires pulling individual classes out of the system to test in isolation.
When you do this you become aware in excruciating detail of all the dependencies
(I can vouch for this), which need to be broken. Now, it can be easy enough to
break dependencies by going in and changing the code you want to test, but that
violates our goal of introducing tests before changing the code.

This leads to the introduction of seams: “A seam is a place where you can alter
behavior in your program without editing in that place”. You can leverage seams to
break dependencies on things you don’t want to test with this class (separation)
and to replace them with fakes or mocks (sensing). The chapter shows how to
introduce seams to existing code and put them to use.

We also get the definition of enabling point, which is the code point where you
make the decision of what happens at the seam.

As an aside, | have a minor quibble with the term seam, because to me a seam is
something sewn and fairly permanent. Maybe “zipper” does a better job reflecting
how easy it is to swap out behavior to me? Seam sounds better than zipper,
though.

There are three main types of seam. Not all are available in every language, but
they all have uses.

Preprocessor seam: Use the preprocessor to switch behavior.

Create a macro that replaces a function call with different behavior. Then when
you #include that, you get the other behavior. Your code would conditionally
#include the macro, for example by a preprocessor define called TESTING. The
state of TESTING determines what code is compiled in (the enabling point).
Obviously this seam is available in C and C++ but not Java or interpreted
languages.

Link seam: Use the linker to switch behavior.

By changing what libraries you link to, you can change the behavior for everything
in those libraries. In Java this would mean changing the classpath (enabling point)
to point to testing classes with the same name. With C and C++ it’s a little harder if
you're linking to static libraries, because you have to create a whole testing library
and make your build script choose where to link (so the enabling point would be a
TESTING build script variable, for example).

ACCU Mentored Working Effectively with Legacy Code
Developers Project 10 of 61

The link seam is particularly powerful if you have a file full of calls to a third-party
library. You can wholesale replace them by changing the link target, and you can
even introduce sensing by adding some logging to the testing library. Of course
this works best for a pure tell library - if you depend on getting things back from
the library (feedback or object creation, .e.g.) there are more complications.

The final point is that the enabling point for link seams is difficult to notice, so you
should make the difference between test and production environments obvious.

Object seam: Use function resolution to switch behavior.

As the name implies, this means switching out what object calls a method. Based
on your choice of object, different behavior occurs. In this case you may have to
make some changes to the test class (although not the line of the seam) to allow
the seam to work.

In one example, the object is created in the function under test. This means there’s
no seam to swap it out. You have to pass the object as an argument somewhere to
break that dependency and create a seam - which has the added bonus of making
the dependency explicit. Furthermore, in order to be able to choose behavior at
runtime, it of course needs to be overridable.

Returning to the first example in the chapter, it turns out you can use any of the
seam types to replace the function call in question. The general recommendation,
though, is to use object seams when possible and reserve the other types for more
complicated cases. I'll note also that the preprocessor and link seams require your
production code and/or build scripts to be aware of testing state, while the object
seam does not.

[think it’s also worth noting that the first example demonstrates the object seam,
even though the call in question is a global method. To create the seam we’re
actually introducing an object method to intercept the call and choosing behavior
there - so object seams aren’t limited to things that are already objects!

The seam model is an interesting way to look at code, and it’s kind of amazing how
many seams you can find when you learn how to look. At my job we have a large
C++ application I'd like to start getting under test. 've made some preliminary
experimental efforts, which mostly impressed on me just how many dependencies
there actually are (very close to the point of everything depending on everything
else, actually). Now that I've read this chapter very thoroughly I'm looking forward
to taking another whack at the code.

I can use object seams to break a number of those dependencies, but we also
depend on CAD and graphics libraries, which make sense to work around with link
seams, as the book suggests. I can’t think of an application for preprocessor seams
at the moment, but wouldn’t be surprised to find some in the code. Does anyone
have a good story about using a preprocessor seam?

ACCU Mentored Working Effectively with Legacy Code
Developers Project

11 of 61

Chapter 5: Tools -«

This chapter, at ten pages, is the longest chapter we have seen so far; though I
don't regard ten pages as a long chapter.

Its purpose is to introduce the reader to some of the 'currently available' tools and
the roles that they can play in legacy code work.

My edition was published in 2005, and so is already six years out of date, I do not
think that there is a later edition, but in our industry life moves on at a very rapid
pace so I suspect that the list of currently available tools would by now be
considerably longer.

The author starts with a discussion on, and brief history of, automated refactoring.
Without repeating him, it is sufficient to say that it is important to select an
automated refactoring tool that does not change the behaviour of the code during
refactoring (and verify any such claims that the tool makes with your own tests). If
you have an automated refactoring tool that works correctly a lot of time can be
saved. However, a lot of time can be lost if you use a refactoring tool that subtly
changes the behaviour of your code.

Next the author briefly mentions the use of mock objects as a dependency breaking
tool, and points the reader to www.mockobjects.com as a good place to find
references to most of the freely available mock object libraries. Maybe in 2005 this
was a good place to go, but Steve Freeman's blog (for that is what it is), while
containing some interesting thoughts on mocking is mostly overtaken by
discussions on the Growing Object Oriented Software Guided by Tests book that
some of us have recently been reviewing.

Next there is a discussion of unit testing harnesses with a reasonable coverage of
JUnit and CppUnitLite, a brief mention of NUnit and a suggestion that for other
ports of the xUnit framework the reader should visit www.xprogramming.com and
go to the downloads section. Again maybe this was a good idea in 2005 but at
present I could find no downloads section and no mention of xUnit on that site
(admittedly after only a cursory look).

The final section is about General Test Harnesses and covers FIT and Fitnesse.
There is very little real information here on FIT. I would have liked a more in depth
view such as we got on JUnit and CppUnitLite (maybe with an example or two). As
for the description of Fitness as being essentially FIT hosted in a Wiki, well that is
interesting but doesn't tell my why this might be a good idea.

All'in all I was disappointed with this chapter, but on reflection had it been any
larger or more detailed then I expect that it would only be even more out of date.
The rest of the book which deals more with principles and practices will probably
not age so badly.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

12 of 61

Chapter 6: | Don't Have Much Time and | Have to Change It «

After Ken drew the short-straw with a rather out-dated Chapter 5, chapter six puts
us firmly back on course with a great mix of theory and practice. It's quite a long
chapter, so apologies if I've missed any important points in this review --- please
post back!

Michael starts with a practical acknowledgement that we seldom have the time to
achieve perfection. It can be very hard to recognise the tipping point at which non-
functional coding such as refactoring or adding tests costs more than it saves. He
makes the point, however, that changes cluster in systems, so "if you are changing
it today, chances are, you'll have a change close by pretty soon". If you accept this
and invest more time in refactoring and adding tests now, then you and your team
will discover that you are "revisiting better code".

But what if you're under real pressure and you can't see a way to get that legacy
code under test soon enough? Do you have to give up on unit testing entirely?
Michael suggests not, and offers 4 techniques by which you can add your new code
and - at least - put tests around your new code.

Sprout Method

If your change "can be made as a single sequence of statements in one place in a
method", then rather than add it inline to your legacy code, we can use test-driven
development to drive us towards the creation of a new method on the legacy class
that can contain our new code. You can then add a call to your new method from
the legacy method.

So why wouldn't you do this? Well, maybe the new method looks a little lost by
itself -- perhaps its code really does belong in the legacy method you've left
behind?

Sprout Class

So what if you tried Sprout Method and discovered that you can't even instantiate
the class to which your new method belongs due to dependencies? The author
suggests simply creating a new class to host your sprouted method.

Hmm, but might that lead to lots of little fragmentary classes? Michael
acknowledges that "Well, at this point, that is true". But if we choose our class
names and concepts carefully, perhaps this could be the start of something new
and better? (I've recently had first-hand experience of this, and am much less
inclined now to be worried about the existence of small classes with single
methods... just think of them as opportunities :-)

Of course, maybe Sprout Class was a better choice than Sprout Method in the first
place anyway -- your new code really does sit more naturally in a new class than in
a method on a legacy class.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

13 of 61

Wrap Method

Again you have a new method DoTheFunkyChicken() to add, and know when you
want to call it, right after DoTaxReturn(). But calling DoTheFunkyChicken() just
doesn't sit comfortably in DoTaxReturn() -- different responsibilities, right? So we
use Wrap Method and - through a set of steps carefully outlined by Michael - we
end up with DoTaxReturn() calling FillInTaxReturn() and then calling our
new (tested) method DoTheFunkyChicken().

This leaves us with future opportunities to DoTheFunkyChicken() in other,
unrelated, contexts.

But the "real downside" is that awkward renaming of DoTaxReturn() as
FillInTaxReturn(). Michael agrees that "Wrap Method can lead to poor names".

Wrap Class

Just as sometimes we find ourselves Sprouting a Class instead of a Method, we can
also Wrap a Class instead of a Method, and for the same reasons: either it's hard to
instantiate or it belongs more naturally in another class.

One way to implement Wrap Class is using the Decorator Pattern -- a pattern I
rather like, but which I haven't actually found that many applications for. In the
example we create a LoggingEmployee that subclasses Employee: it's pay ()
method does the new stuff, then calls down to the Employee: :pay() method in
the base class. The pure Decorator Pattern (IIRC) relies on Employee actually
implementing an IEmployee interface, but the principle is the same. Decorator is
most appropriate if you've got a number of unrelated behaviours that you want to
sometimes add to Employee.

An alternative that is "not so decorator-ish" is simply to create a new, appropriately
named class whose sole responsibility is to do the new stuff (logPayment () in this
example) and then to delegate to the pay () method on Employee.

Michael identifies two cases where he would go to the extent of using Wrap Class:
firstly when the new behaviour just doesn't belong in the legacy class (separate
responsibility) and secondly if the legacy class "has grown so large that I really can't
stand to make it worse". You might feel uncomfortable with the latter case, but if
this process is repeated then over time, using all these techniques, then a new
healthier, better tested structure will emerge.

Conclusion

So we have 4 techniques for testing our new code, supported by examples which I
find very clear and easy to understand. None of this is rocket science, but that just
makes it more likely we'll consider using them! Furthermore, each has a clear set of
suitability criteria, a step-by-step implementation guide plus a list of pros and cons
to help us decide whether the technique is appropriate. Excellent!

But we must be careful: as Michael says, "unless you [also] cover the code that calls
it, you aren't testing its use. Use caution."

ACCU Mentored Working Effectively with Legacy Code
Developers Project

14 of 61

Chapter 7: It takes forever to make a change -

This chapter feels more like a summary and linking chapter than a source of much
new content, designed to guide the reader to different parts of the book depending
why it is taking so long to make a change. Is the time taken up trying to
understand the system in order to make the change, or checking that the change is
correct and doesn't break anything else.

Understanding

For any large system, it will take some time to understand how to make a change.
The difference that proper maintenance gives is how easy it is to make the change,
and how much you understand that area of the system afterwards.

“Systems that are broken up into small, well-named, understandable pieces enable
faster work.”

If this doesn't describe your system, then Chapter 16, I Don't Understand the Code
Well Enough to Change It, and Chapter 17, My Application Has No Structure,
should provide more guidance.

Lag Time

From earlier chapters we already know the problems of waiting overnight to get
test results. In this chapter a story about the Mars Rover examines the problem of
waiting just 14 minutes to see the results of any command.

Seeing results infrequently leads to the temptation to test a bunch of changes at
once. If the tests fail, you don't know exactly what caused the problem.

For software, Michael advocates being able to build and test the code you are
working on in 5-10 seconds. This leads to short steps of code, compile, test, code,
allowing much greater concentration than a system where you have 5-10s to code
then a minute to wait for everything to compile and be tested.

Sidenote:

I got a bit lost at the end of this section - Michael seems to be advocating 5-10
seconds coding, then compile-test, then more coding and so on. I haven't done
much Test Driven Development, and the only area where I've been able to make a
5-10s change in the code and still have it compile at the end is GUI modification,
when just moving components around to try and get it to look right.

Breaking Dependencies
Breaking dependencies is the main way to reduce compile-test time.

First step — get the class into a test harness, and get the methods to run. See
Chapter 9, I Can't Get This Class into a Test Harness and Chapter 10, I Can't Run
This Method in a Test Harness. Hopefully the code can now be compiled and
tested quickly. If the methods are still slow due to lots of calculations, rather than

ACCU Mentored Working Effectively with Legacy Code
Developers Project 15 of 61

external resource calls, look at Chapter 22, I Need to Change a Monster Method
and I Can't Write a Test for It.

If getting the class into a test harness at all is proving too difficult, look at Chapter
12, I Need to Make Many Changes in One Area. Do I Have to Break Dependencies
for All the Classes Involved?

Build Dependencies

Once you have the class running in a test harness, you can try to speed up compile
times further by breaking dependencies. Using Extract Interface or Extract
Implementer, you can unpick seams and replace them with velcro, poppers or a
zip. This increases complexity and rebuild time for everything but reduces build
time when only compiling classes that have changed. The aim is to get small
groups of classes that are easy to work on.

The book goes through an example of this, and then gives the dependency
inversion principle. A somewhat cut version of this is “It is better to depend on
interfaces or abstract classes than it is to depend on concrete classes. When you
depend on less volatile things, you minimize this change that particular changes
will trigger massive recompilation.”

Conclusion

We now have a lot of resources to use when change is slow, and a guide through
how to break down and organise classes and interfaces. There's also a goal — under
10 seconds to compile and run tests on any section of code.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

16 of 61

Chapter 8: How do | add a feature? -

Test-Driven Development (TDD)
Michael states here that he considers TDD to be the most powerful feature-
addition technique that he knows and describes its well-known cycle:

Write a failing test case.
Get it to compile.

Make it pass.

Remove duplication.
Repeat.

EAEE N

He illustrates this process with an example taken from a financial application that
needs a class to compute the first statistical moment about a point. First of all, he
writes a failing test case that makes the related method to always return NaN. Then
he makes it pass by writing the proper algorithm (noting that the steps taken to get
a test compiling are usually much smaller). When the test passes, he checks if there
is any duplication to remove. There isn't any, so he proceeds with extending the
new method to take into account the possibility of it being called with no elements
in the instrument calculator. A new test is added to trigger that condition, which
fails initially because an ArithmeticException is thrown when dividing by zero
in firstMomentAbout() instead of the desired InvalidBasisException. Once
the method's declaration and implementation are both modified so that it throws
an exception of that type, all is fine and he can go on (again, there is no duplication

here).

At this point, Michael proceeds to write a new method to compute the second
statistical moment about a point. The process he follows is basically identical to
that for firstMomentAbout (), but it turns out that the implementation for the
second moment is actually only a slight variation of the implementation for the
first moment. The idea of generalizing the method to accept an arbitrary value for
the statistic moment is put on hold for the moment (because it is a burden for the
caller and also something we don't want to allow). So, without further delay, he
copies the code for firstMomentAbout (), renames it and changes the single line
that needs to be different in order for the test to pass. Now that both tests pass, it's
time to remove duplication. The process goes as follows: first, he extracts the body
of secondMomentAbout () to a new method called nthMomentAbout () that takes
a parameter N and, finally, he replaces the code for firstMomentAbout() and
secondMomentAbout () with calls to nthMomentAbout () with appropriate
arguments. | think this is general good advice, specially with the confidence
provided by having tests in-place: when writing new code, I try not to tackle
genericity first, but arrive to it naturally through refactoring (if it's needed at all).

Michael ends this section of the chapter noting how valuable the separation
between writing code and refactoring that TDD provides is when working with
legacy code. Based on this, he proposes a revised TDD cycle for legacy code:

ACCU Mentored Working Effectively with Legacy Code
Developers Project

17 of 61

o- Get the class you want to change under test.

1- Write a failing test case.

2- Get it to compile.

3- Make it pass (trying not to change code as you do this).
4- Remove duplication.

5- Repeat.

Which seems sensible enough to me.

Programming by Difference

In this section, Michael describes a technique known as programming by
difference that makes it possible to introduce features to a class without modifying
it directly by means of inheritance. He exemplifies it with a MailForwarder class
from a program that manages mailing lists. The existing implementation has a
method getFromAddress () that strips out the "from" address of a received mail
message and returns it so that it can be used as the "from" address of the message
that is forwarded to list recipients. He wants to support anonymous mailing lists,
where the "from" addresses of posters are set to a specific e-mail address based
upon the value of the domain. In order to add this new feature, he subclasses
MessageForwarder and creates a new class AnonymousMessageForwarder that
overrides the getFromAddress () method. This makes the test pass, but it isn't an
ideal solution in the long term to subclass MessageForwarder to change just its
"from" address.

Then, Michael comments on the big problem of making excessive use of
inheritance: how to combine several features when they are distributed amongst
many different subclasses. He describes a way of implementing the anonymous
forwarding without inheritance: by using a configuration option passed to the
constructor of the class. Which is cleaner, but may potentially break the Single
Responsibility Principle [1]. He then explains an even better way to proceed when
there are many configuration properties that consists on abstracting them into a
MailingConfiguration class. The class starts as a simple wrapper over the
properties collection we had before, but ends up supporting high-level
functionality like getFromAddress () --to support the anonymous lists feature--
and buildRecipientList() --to support the off-list recipients feature--. The class
name is also changed to MailingList in order to better reflect its purpose.

The important thing to note here is that programming by difference is a useful
technique that allows adding features quickly and that having the code covered by
tests enables rapid transition to better designs as the need for them arises. And
that to do that well, we have to be careful with not breaking fundamental object-
oriented principles like the Single Responsibility Principle (which we just covered)
and the Liskov Substitution Principle [2].

The practical description of this second principle is the final part of the chapter.
LSP says that objects of subclasses should be substitutable for objects of their
superclasses throughout the code. The practical implication is that clients of a class
should be able to use objects of a subclass without having to know that they are in

ACCU Mentored Working Effectively with Legacy Code
Developers Project 18 of 61

fact objects of a subclass (so violations of the principle in a class may happen or not
depending on its users and their expectations). This was not taken care of before,
when overriding the getFromAddress () method in AnonymousMessageForwarder.
A better solution, Michael proposes, i to use normalized hierarchies, where no class
has more than one implementation of a method.

[1] http://en.wikipedia.org/wiki/Single_responsibility_principle
[2] http://en.wikipedia.org/wiki/Liskov_substitution_principle

I liked this chapter. Although it covers well-known ground, I find it to be a great
summary of why tests are useful when writing new code and how they facilitate the
refactoring phase.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

19 of 61

Chapter 9, | Can't Get This Class into a Test Harness «

We start off with an understatement: "this is the hard one". It certainly is. It is the
hurdle at which most people immediately fall. This large chapter details seven
common problems and analyses some of their solutions. I had been looking
forwards to this one because I utter the title most days! It did not disappoint...

The Case of the Irritating Parameter

To test a class you have to create an instance in your test harness. The best way to
go about this is simply to try it and let the compiler tell you what's missing. ("Lean
on the compiler” is a common, powerful, and perfectly valid, tool.) What is often
missing is a parameter that is itself an object that is hard or even impossible to
create. The most common cause of irritation is that the parameter is a
heavyweight, complex object, and/or one that has widespread dependencies. What
we want to do is to fake the object and thereby avoid the effort of creating the real
thing. To enable this we should consider applying "Extract Interface" to the object's
class. If this technique can be applied, we can create a fake implementation of the
interface and move on.

At this point we are asked to think about how strange the fake object concept is.
But we are working in the test code domain, not the production code domain, so
the rules are different. Writing a class that does nothing useful in and of itself
might seem odd, but its utility is in enabling simple tests (or any tests at all) to be
written.

We move on to a second, less irritating parameter: one that turns out not to be
needed at all in the code being tested. (Maybe it is used in a different method, or a
subclass, that we're not interested in right now). In this case why not pass null?
Again, this might seem counterintuitive: a lot of production code is littered with
defensive checks for exactly this case. But remember we are writing test code, not
production code, and think more about how much easier the tests are to write if
we use this technique.

At this point a sidebar goes into more detail about "Pass Null". In some languages
the run time will catch dereferencing of a null pointer. This can be very useful if
your tests do turn out to need the nulled parameter. However, in languages such as
C and C++ it can be very risky, and even counterproductive, so proceed with
caution.

I would add two points here

1. If things like null pointers are a problem it can be very useful to run your tests in
a different environment from the production system: an environment that
provides better run time support for your problem areas.

2. Ifyou are passing null, use a self-documenting local variable:
CreditMaster dontNeedACreditMaster = null;

CreditValidator validator = new CreditValidator (connection, dontNeedACreditMaster, "a");

ACCU Mentored Working Effectively with Legacy Code
Developers Project

20 of 61

One last area of discussion about passing null is the Null Object Pattern. This
replaces the null pointer with a valid instance of a Null Object. Refer to [Null] for
more details.

If our irritating parameter is easy to construct, but irritating to use, we can use
"Subclass and Override Method" to override the problematic methods and create a
more benign subclass to use in test code only. But we must make sure we don't
alter the fundamental behaviour that we want to test.

The Case of the Hidden Dependency.

Some classes are easy to instantiate but hide dependencies within. The example
given is a constructor that new()s a heavyweight application object, then proceeds
to manipulate it. We not only have a nasty dependency on some other part of the
system, but we also have a problem sensing our effects on this object. Inability to
sense implies inability to test effectively. So we need to introduce a fake somehow.

The first approach is to "Parameterize Constructor”. If we pass the object in, rather
than let the constructor create it, we can "Extract Interface", then provide a fake
implementation. To hide the extra parameter change from the rest of the system,
we can "Preserve Signatures": provide an overloaded constructor with the original
signature that creates the extra parameter locally, then calls the new constructor.
This works well if the object in question has no construction dependencies.

Other approaches deal more directly with the internals of the class: "Extract and

Override Getter", "Extract and Override Factory Method" and "Supersede Instance
Variable".

The Case of the Construction Blob

Some constructors create a lot of other objects, or access lots of globals. To attack
such a class with "Parameterize Constructor” could lead to a large parameter list.
An alternative is "Extract and Override Factory Method" but this only works in
languages that allow calls to virtual functions from constructors. Even if the
compiler allows it, this can be considered bad practice.

If the problem is simply getting to one of the internally created objects, to sense
the effects of a test, then "Supersede Instance Variable" can be used to simply
replace the original object with a test fake. However, be very careful about leaking
the original object, or objects it refers to. In general we have to be very aware of
object scope and lifetime. Even with these problems, "Supersede Instance
Variable" can be useful; and sometimes in C++, the only option.

The Case of the Irritating Global Dependency

Global variables are one of the hardest dependency problems to deal with when
testing. Chief among global variables is the singleton. We have quite a bit of
discussion about the justification and pitfalls, but I shall not summarise that since
I'm sure that being ACCU members, we already know this! Refer to [GoF] for more
details, or Google "Singleton".

ACCU Mentored Working Effectively with Legacy Code
Developers Project

21 of 61

With respect to testing, it is the inability to control the lifetime of a singleton (or
other form of global) that causes the most trouble. Tests can interfere with each
other because state is preserved globally.

Two simple approaches are presented: the first is "Introduce Static Setter" whereby
we can easily replace the singleton instance with a fresh one, and possibly even
pre-set some state. The second is to add a static method "resetForTesting()"
which is essentially a special case of the static setter that simply forgets the current
instance, leading to a new one being created the next time the singleton is
accessed. Relaxing access protection of the singleton instance, via public setters,
might seem to be a backwards move (breaking encapsulation etc.). But remember
that we are trying to add tests to improve other areas, and the price is almost
always worth paying.

An additional technique is to "Subclass and Override Method" on the singleton
class. Combined with a static setter this allows us to inject a fake instance of the
singleton's base class.

We could choose to solve the source of the global dependency problem, but this
requires far more effort. We are presented with a list of refactorings, and each has
its downsides. If the effort is great, we must ask ourselves the bigger question:
why? Why do we have hundreds of references to a global variable, scattered
throughout the code? The answer will usually indicate some fundamental design
problem such as insufficient layering or separation of responsibilities. These are
dealt with in later chapters.

The Case of the Horrible Include Dependencies

In languages such as C++, where source files can include other source files, we can
end up with "small files that end up transitively including tens of thousands of
lines of code". I like that phrase. This leads to slow builds, and classes that are a
nightmare to bring into a test harness.

If we take the class at face value, we can lean on the compiler (and linker) and
incrementally include more and more of the system until it compiles cleanly. As we
do this, we should examine each dependency a consider whether it is really
necessary. (I have done this myself, and it is a very powerful technique. Sometimes
just 10 minutes effort can radically simplify a module.)

If we can build our tests in a separate executable, we can stub dependencies by
providing empty or minimal implementations that satisfy the compiler and linker,
but do little else.

Although we are using what amounts to pre-processing and link seams, we are not
changing the shape of the code, only making it easier to test. In fact we are more
likely to make more problems in the future, because our duplicate definitions (the
stubs) have to be maintained as the code they replace changes.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

22 of 61

The Case of the Onion Parameter

This is the problem of needing to have many layers of objects created before we
can instantiate our object under test. At some point in the hierarchy, we have to
apply "Extract Interface" (or its opposite, "Extract Implementer”) so that we can
either pass a null object, a fake, or a very simplified implementation. We might
even be able to simply pass null.

Although we might get caught up in defining convoluted class hierarchies,
remember we are in the test code domain, not writing production code. In essence,
"in any language where we can create interfaces [...] we can systematically use
them to break dependencies”.

The Case of the Aliased Parameter

I'm afraid I didn't understand what 'aliased’ referred to here. The start of this
section seemed to hark back to the others and offer nothing new. I have probably
missed the point!

One nice point to take away is a refinement of "Subclass and Override Method": to
create a fake class "on the fly", i.e. in the local scope of the test method. I first saw

this demonstrated recently, since it is the style of testing heavily promoted in
[GOOS]

We can run into trouble in poorly designed classes where it is not possible to
isolate undesirable behaviour with "Subclass and Override Method". In this case we
must apply other refactorings first. This subject is covered in a later chapter.

[Null] http://en.wikipedia.org/wiki/Null_Object_pattern
[GoF] http://en.wikipedia.org/wiki/Design_Patterns
[GOOS] http://www.growing-object-oriented-software.com/

ACCU Mentored Working Effectively with Legacy Code
Developers Project

23 of 61

Chapter 10: | can't get this method into a test harness -

So, after chapter 9 we can access our class in a test harness. The next chapter deals
with getting the methods we're interested in under test. Here we might run into:

e complicated logic buried in private methods

e invocation awkwardness (like construction awkwardness in cg)

side effects!

unclear purpose requiring some sensing

The case of the hidden method
[Test through public methods; make method public; or make method protected,
subclass and override. |

Sometimes you meet a public method that has hidden a significant chunk of logic
in a private method. We might want to refactor that method to simplify it, or make
it more generally useful. First, we need it under test. Here Michael suggests a
multilayered approach.

The first thing to do is test through the public methods - we should do that when
we can. Sometimes, however, that's awkward or not possible, and we want to test
the currently-private method directly.

Our next tactic is to make the method public. If that worries you, the class is doing
too much, and you should think about extracting behaviour to a new class.

Before refactoring to a new class we need to characterize the method's behaviour.
Michael suggests subclass and override, after first elevating the method to
protected from private. Subsequently we can get the method under test and have a
basis for a true refactoring to a new class.

Each tactic here results in a more-public method. Worried about breaking
encapsulation? Michael asserts that this is a fair exchange on the way to better
code. He also gives reflection short shrift, asserting that it just delays the cost of
paying for a bad, hard to test code base.

The case of the 'helpful' language feature
[Extract interface and work to that, if the code is ours. Wrap in our own interface
to heal round code that isn't ours.]

Ah, sealed classes. Once, we were told it was a good idea to seal by default; but no
more. Unfortunately, that leaves us (from experience) with a lot of unnecessarily
sealed classes that are hard to get under test. In this case, Michael threw me a loop:
I expected the method under test to be part of a sealed class. Instead, his example
is about testing a method that *uses* impossible-to-construct sealed classes.

His example shows a method that uses a list of HttpPostedFile, which is sealed,
has a private constructor and is provided by a third party. How are we to pass in

ACCU Mentored Working Effectively with Legacy Code
Developers Project

24 of 61

instances of this class to the method in tests? We can't subclass and override;
neither can we extract interface or extract implementer.

Instead, Michael indicates that we can use adapt parameter to pass in test instances
to the existing method. We adapt by skin and wrapping the api - creating our own
proxy wrapper structure (interface, fake class, proxy for real class) that we bury
HttpPostedFile in.

We can then lean on the compiler we can intervene in our prod code, process the
objects being passed in (HttpPostedFile), converting them into our new
wrapping structure and hand them over to the method we're interested in testing.

The case of the undesirable side effect
[Decompose into distinct behaviours and extract method, then subclass and
override.]

"Oh, while I'm iterating this list to do load market data, I may as well update the
GUI with the count as well. It'll save time later!"

Where to start? Get a good handle on what the method is actually doing,
decompose each independent item and extract method to simplify. Michael
presents an example that draws out the command/query separation — a method
should either be a command, and alter state without returning a result; or a query,
returning a value without altering state. Methods with side effects — and methods
that do too much generally - are likely to contain elements of each.

Once we've extracted the independent methods we can sublcass and override to
test the code that's left behind. After that, we might look again at moving the
extracted methods to new classes - but at least at this stage we should be able to
start testing.

Chapter 10: Summary

Michael moves on from describing how to get a class under test, to dealing with a
few of the issues we face in getting methods under test. Generally he seeks to
isolate methods by using subclass and override, and most of the techniques here
are ways of getting us to that point.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

25 of 61

Chapter 11: I need to make a change -

So, we've got a good idea of what behaviour we need to change, and we know,
roughly, the area of the code that needs to change to make that happen. Now that
we're there though, we need to figure out exactly where (or, "around what") to put
the tests.

Really, there are two things we need to test:
1. The existing behaviour (we need to 'characterise’ it)
2. The new behaviour

Getting the first of these done is really what this chapter is interested in (I think).
Can we perhaps rephrase the question to make this clearer? Are we actually asking:

"What should our characterisation tests look like?" (1)

Michael introduces the term "effect analysis" to start to deal with this process. This
quote starts us off very nicely.

"for every functional change in software, there is an associated chain of effects"

Michael, inappropriately calmly, suggests we try to sketch out the effects of
changing a given function (or class) first (without necessarily looking for call sites).
This will give us some sense, at least, of the scale of the task we face. We can even
use these effect sketches, later on, to help us see how to identify ways of
simplifying the design.

For me, this is a little like doing some 'scratch refactoring'. We can quickly find
flaws in the design of existing code that makes reasoning about effects difficult
(mutable state, lack of command/query separation, poor encapsulation, etc).
Unfortunately, at this point we are unable to fix these as we lack the necessary test

coverage; we haven't really answered (1).

Michael moves on to an example involving a java class named InMemoryDirectory.
The killer point, for me, hides within these lines:

"Fortunately, our application uses InMemoryDirectory in a very constrained way"
"The tests are just a description of how we use this [functionality]”

Just as importantly, we also have the following:

"Unfortunately, figuring out where to test isn't always that simple"

Defensibly though, the simple example gives us a reasonably general rule: our tests

should describe the usage of the functionality (before we start changing it). I read

ACCU Mentored Working Effectively with Legacy Code
Developers Project

26 of 61

this as "We should use our knowledge of the call pattern for this code to drive the
way we write our tests for it".

If we can cover the existing call patterns with tests, we'll have described the current
behaviour of the code. One thing this chapter could perhaps emphasize more is
that the existing behaviour may be *completely insane*. Unfortunately we still
need to rigorously discover the full extent of the insanity before we can start
making things better.

Let's take an extreme example (Perhaps others could share their stories of
nightmarishly complicated effect propagation?). Imagine the code we want to
change sits just underneath the interface of a public, shared, api (perhaps, worse,
in a dll). We may not even know how many callers there are, or how far the value
(and its effects) returned from our function propagates up the call stack.

Tracing the call pattern might be a lot harder (we may, *shudder®, have to
communicate with our clients), but we can (and should) still do it. The data we get
back from our investigations may make our lives considerably easier than
attempting to cover the (possibly huge) theoretical set of interactions with the
code. Indeed, with this knowledge, we may later on negotiate a different contract
that more tightly expresses the desired usage pattern.

The example Michael gives doesn't deal with that level of complexity ("you would
have gotten bored and closed the book" - I hope my example has not had this effect
:-(). I am immediately drawn to the neat, checklist like rules that can be applied in
'library-like' situations. Effect propagation is categorised as follows (parenthesised
descriptions mine).

1. return values (usually OK)

2. modification of objects passed around as parameters (usually evil)

3. modification of global or static data that is used later (usually super evil, but you
gotta do it somewhere)

We can probably forge our own list for where our function can grab input from,
too. A brief think from me yields the following (certainly non-exhaustive) list:

function parameters

object state (includes parent's state, and all the 'reachable’ state of members)
global state

out of process state (filesystem, sockets, etc). Could be combined with 3.

AW oN o

Theoretically, any function could access all of those things before returning a
value, having tickled one or two parameters, some internal state, and some global
state. ARGH! For sanity's sake, we should hope that our fellow programmers have
not been so unkind as to leave us with systems that do such things. Michael
mentions that more functional languages like Haskell and Scheme make it far
harder to write code with hard to find effects. If only they were in more widespread
use :-(. There is still hope though:

ACCU Mentored Working Effectively with Legacy Code
Developers Project

27 of 61

"...in OO languages, restricting effects can make testing much easier, and there
aren't any hurdles to doing it"

I couldn't agree more! In my experience, even without language level support for it,
writing in a functional style is a tremendous help, even if it is just by convention.

Summary:
The chapter ends with a discussion that concludes that

"Encapsulation isn't an end in itself"

It might have been more general to say: "our design should be driven by a desire to
minimise the possible effect chain". Certainly, for me, that's the subtext of this
whole chapter (which fits with the subtext of the whole book, i.e "please stop doing
these horrible things in your code" - possibly this is me projecting my own feelings
onto the author, however). The subsection on "simplifying effect sketches" really
brings this through - simplicity is our goal (as soon as we're sure we haven't broken
things).

And finally...

[want to discuss the heuristic given on places to look for effects. I'm really
interested as to whether we can improve software based on checklists (in the same
way that simple checklists can aid something as complicated as surgery. Type
"checklists save lives" into your preferred search engine, and you'll hopefully see
what [mean). Lint like tools take us a long way down this road, but can we go
further, and talk about 'softer' practices in terms of checklists, too?

As a tiny exercise: can we (collectively) expand and annotate this checklist, to
provide a reasonable set of places for a wary programmer to check, so that they
may have a little more confidence they aren't about to kill the patient? Do we need
different lists for different languages (or are there general principles that we can
leave some language specific leeway in)?

(N.B I've taken the rather dangerous liberty of rewording these, and reordering
them a little)

1. identify a method that will change
2. if the method has a return parameter, look at its callers
¢ if the method modifies any values, trace the usage of the values
e don't forget about super or sub classes here (or friends, in C++.
Are there other, more evil ways that people could be getting at this state?)
e you'll have to trace callers of other functions that use these values too
3. if the method has mutable parameters, trace their usage from the point that
they are mutated
4. if global state is accessed or mutated during your function, find
e all the places where that global state is written
e all the places where that global state is read
e the person who wrote it, to demand satisfaction
5. What about intra-process state?

ACCU Mentored Working Effectively with Legacy Code
Developers Project

28 of 61

Chapter 12: | Need to make many changes in one area.
Do I have to break dependencies for all the classes involved? e

Summary

This chapter builds upon the 'Effect Sketches' described in the previous chapter as
a method of finding 'Pinch Points' to allow the developer to add higher level
'covering tests' in a scenario where it is impractical to break all dependencies
necessary for Unit Tests to be added. These 'covering tests' work with the code
directly affected by where you wish to make your change and effectively pin down
the current behaviour allowing you to make changes knowing that these these will
alert you of any unexpected changes in behaviour. These tests act as a support

while you refactor the code they cover to allow for unit tests and in time should be
killed off.

Review

In the scenario where you need to add a new feature, or make a change to a small
number of closely related classes, it may be more practical to go "one level back"
and find a place where with can write tests for several changes at once, thereby
providing "cover" for more refactoring in that area as we will have pinned down the
behaviour with tests.

In a side note, Michael reminds us that while higher level tests are an important
tool, that they should not be a substitute for unit tests and instead should be a first
step toward getting unit tests in place, i.e. we can refactor the code to break
dependencies with the covering tests ensuring the behaviour is not modified.

Interception Points

An 'interception point' is a point in the program where you can detect the effects of
a particular change. Michael then lists a simple example and uses his 'effect
sketches' as described in chapter 1 to map out where a change to the 'getValue'
method of the Invoice class affects other related classes. In another side note he
states that it is generally a good idea to pick an interception point as close as
possible to the required change - each step away from this is akin to a step in a
logical argument and makes it harder to know that you've got it right. He suggests
that once your tests written to temporarily alter the code under test to prove the
tests capture the changed behaviour. This is a step I've done many times myself
when adding tests to existing code.

In the cases when a change is on a public method on the class we're changing,
using this as an interception point might not be the best choice. Michael suggests
expanding the effect sketch and to look for a higher level interception point.
Michael states that the benefits of this are twofold: we would have less
dependency breaking to do and we'd have a bigger chunk in the vise of testing,
meaning more cover for refactoring. In the example we discover that there is a
single point through which all the changes would be detectable, Michael names

ACCU Mentored Working Effectively with Legacy Code
Developers Project

29 of 61

this a "pinch point' - a narrowing in an effect sketch where tests against a couple of
methods can detect changes in many methods.

Judging Design with Pinch Points

Micael states that pinch points are really encapsulation boundaries - where all of
the effects of a large piece of code are funnelled. This knowledge can be used to
carve out sets of classes within a program, write 'characterisation tests' (to be
described in the next chapter) around them and start making refactorings. In a
rather large side note, Michael explains this with an example to show how the
effect sketches can highlight boundaries suggesting that new classes could be
extracted out.

Pinch Point Traps

As stated previously in a side note - 'covering tests' such as pinch point tests are
merely a stepping stone to get your code into finer grained unit tests. The pinch
point test will be bulky, having to instantiate many classes and setup scenarios
through many steps and this is cumbersome to run and difficult to maintain, so it
is import that they are used for support but are killed over time.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

30 of 61

Chapter 13: I need to make a change,
but I don't know that tests to write

This chapter starts with some observations on how tests form a safety net for
making changes and how tests specify the behaviour of our software. In a test
driven design environment we know beforehand what the tests need to be, but
how do we characterise the behaviour of legacy software? That is what this chapter
is about.

The first part of the chapter explains how to write tests for finding out the
behaviour of the software. Assuming you can instantiate the objects you want to
investigate you call in your tests methods on the object and test against
improbable outcomes. The result is that your test fails and shows what the
expected value is meant to be. After replacing the improbable outcome with the
expected value, the test will pass. Although this technique may feel strange
(especially when used to test-first development) it does the job of building the
aforementioned safety net (and I have used this approach myself with good
results).

There are a few caveats: first of all you are quite likely to detect bugs, i.e. you'll find
that the software doesn't behave the way you'd expect from either documentation
or intent. The question is what to do: fix the bug or leave it as it is? My feeling is
that Michael leans towards the former, while I in first instance believe one should
leave it as it is for the following reason: we are trying to characterise the behaviour
of the software as it is, not as it should be. There is of course a danger of forgetting
about the bug if it is not fixed and we leave the test to pass with the wrong result.
My solution to this is to write another test with the expected values as we think
they should be. This test will fail until we come back to it and fix the bug (in which
case the original test will fail which is intended because after fixing the bug we can
delete that one).

The other caveat is that these characterisation tests normally are not unit tests but
more often integration tests. We want to find out how the software works before
we can start refactoring and breaking dependencies. I think it is good to come back
to these characterisation tests after refactoring the software under test and then
refactor the characterisation tests into proper integration tests (probably extending
the tests as we have broken dependencies).

The next bit of the chapter gives some tips on how to find out what a piece of
software is actually doing. Since we are working top-down the testing is often at a
high level. If the software is complex we may find out how specific classes or
methods are working by using sensing objects (as discussed in Chapter 3). Other
things to take into consideration is to detect which assumptions can cause the
software to misbehave and to find extreme values for the input parameters. Finally,
try to find and test the invariants of a class. All these techniques will probably need
some or extensive refactoring, for which tests are needed. I don't know how to
break that vicious circle, although I think one can try to isolate specific
dependencies and test those before moving on to larger refactorings and really
break things down.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

31 0of 61

The last part of the chapter discusses how to test that the changes we want to make
are actually correctly implemented. Make sure to write tests that follow the
different paths through the code (the example given shows an if-else branch). And
finally, make sure that each conversion along the path is exercised.

Again, a very good chapter.

ACCU Mentored Working Effectively with Legacy Code
Developers Project 32 of 61

Chapter 14: Dependencies on Libraries Are Killing Me -

This chapter starts out by noting that libraries can be an excellent opportunity for
time saving code reuse, but with that opportunity comes some serious dangers. It
is very easy to allow dependancy on the library to become embedded in the source
code, making it vulnerable to changes to the library. An example is given of the
license fees for a library increasing to make the product unviable. The chapter
notes that every hard coded use of a library class is a lost opportunity for a seam,
and that while many libraries are written in a way that facilitates tests, many are
not. Libraries with classes that are final or closed, or with interfaces that are not
virtual, can be hard to mock out, the suggested solution to this is a thin wrapper
around the classes.

Finally the chapter suggests there is a tension between enforcing good design and
testablility, a common example being the once dilemma; an assumption by a
library that there is only one of something. This can make it difficult to use fake
objects. If none of the dependancy breaking techniques prove appropriate then
wrapping the singleton might be the only choice remaining.

The chapter finishes by mentioning the 'restricted override dilemma’, where
methods are made non virtual, which hinders sensing and separation. I am not able
to distinguish this point from the earlier point about non virtual interfaces. The
point is made, however, that restricting access to the library contents from code
that uses it can be seen as good practice, without realising that it hampers the
testability of the customer code.

The chapter concludes that a coding convention can be as good as a restrictive
language feature.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

33 of 61

Chapter 15: My application is all API calls -

The chapter starts by explaining that it looks like that third-party libraries don't
need to be tested, especially when starting a project in which the third-party
library is not used heavily. However, over time it may get used more, become more
hidden so that changes in the software may have side effects through the third-
party library, etc. And then we are suddenly dealing with legacy code.

We are given an example application written in Java that acts as mailing list server
and forwards incoming messages to a list of email addresses stored in a text file.

The application relies heavily on Java classes, some of which are sealed, so that
testing is problematic (the sealed classes can't be overridden, so refactoring to
interfaces is difficult). Still, by redesigning the mailing list server and high lighting
the responsibilities we are shown that some testing without direct dependencies on
the lower level API can be done. A referral to Chapter 20 (This class is too big and I
don't want it to get any bigger) is made and a tip is given to consider the code as
one big object we want to break up.

We are given to options to consider in general when we are confronted with direct
exposure to an API:

1. Skin and wrap the API

2. Responsibility based extraction

Option 1is a good option when the API is small and not too complex (and gives us
the chance to build interfaces, so no sealed classes). The big advantage is that all
dependencies on third-party libraries are broken. Option 2 is more appropriate
when the API is large and/or complex. It helps if you can rely on a refactoring tool
to do the extraction safely.

Note: In the final example, the function sendMessage calls a private function
getSMTPSession to get a Transport object:

Transport transport = getSMPTPSession().getTransport("smtp");

Wouldn't it have been better to have a function getTransport(string protocol)?

ACCU Mentored Working Effectively with Legacy Code
Developers Project

34 of 61

Chapter 16: | Don't Understand the Code Well Enough to Change It

This chapter introduces techniques to help understand a code base. Many of these
are familiar, Michael gives them names and discusses their benefits.

Notes/Sketching

When reading through code, take notes and some simple sketches. These notes
will help you understand the code and generate more questions. The sketches
don't need to be complex or UML, they are to help you now. They are not a part of
the formal documentation.

Michael explains that you don't need to require developers to use this technique.
Just use it when working as a team and they will quickly see the benefit.

[also use the IDE search tools to help me jump around the code and sketch out
what is happening. I find the need to re-experience the code for review and
understanding can never be replaced by documentation.

Listing Markup
In this technique, the code is printed out and notes are written on the printout.
The book lists different markup:

Separating Responsibilities
Use a marker to group similar ideas together so you can see where they are in the
code.

Understanding Method Structure

Use a number or some other mark to line up the blocks in a large method. Often
indentation can make the code hard to read.

Extract Methods

Circle the code segments you would like to extract from a large method. You can
keep track of its coupling count.

Understanding the Effects of a Change

Mark the code you would like to change. Then find and mark all the variables and
methods that could be affected by your change. This could help you understand
how your change will propagate through the code.

[used to print out code all the time. It would clutter my desk forcing me to clean
every week or so to find writing space. But now I find that there is too much code.
It is much easier to read the code on the screen and jump around using the IDE
tools. I keep notes and thoughts on a separate piece of paper

Scratch Refactoring
Scratch refactoring is when you check out the code and just start refactoring
without tests. Just moving around code to see what happens. Michael believes this

ACCU Mentored Working Effectively with Legacy Code
Developers Project

35 of 61

is a great way to understand the basics of the code and how it works. However,
there are a few risks. We could make a mistake which leads us down the wrong
rabbit hole. We make a wrong assumption about the system. We could also get
attached to our scratch refactoring, believing that it is the way to go. But we should
let the real refactoring with real tests drive itself with this bias.

Delete Unused Code

If the code is not used or commented out then remove it. Why keep something
that could be confusing? Keep the code simple. When developers first start
working for me this is the biggest change for them. They have been conditioned to
add comments and commenting out old code. (You never know when you might
need it again.) But I think it just distracts from what the code does now and that is
what is important. If there is deleted code you really need back then you can
always get from the version-control system.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

36 of 61

Chapter 17: My Application Has No Structure -

This chapter is very dear to my heart, having worked on a number of systems that
had no apparent structure.

Almost all systems start with some overlying architecture, but over time, often with
deadline pressure, this structure decays or is lost.

Michael gives three reasons behind the lack of awareness of the underlying
structure:

¢ the systems is so complex it takes a long time to understand the big picture
e the system is so complex that there is no big picture

e the team is so reactive they lose sight of the big picture

Michael points to a common solution (or proposed solution) that is to have an
architect whose job it is to maintain the big picture for the team. He also points
out that this really only works when the architect is working with the team on a
day to day basis. Otherwise it is often the case the big picture of the architect no
longer matches the big picture viewed by the developers.

This chapter gives three ways to help describe the big picture and gain a better
understanding of it.

Telling the story of the system

Start with very simple outline, as if explaining the system to someone who knows
nothing about it. Iteratively go into more detail. When you have a change to make,
go with one that better fits the simpler descriptions rather than adding more edge
cases.

Naked CRC

This approach uses blank CRC cards as entities in the story of the system. Cards
represent objects, composed objects or collections are overlapped cards. Lots of
pointing and hand waving ensues

Conversation Scrutiny

Listen to the conversations you have about your system. Developers use a certain
vocabulary when describing how the system works. Does the vocabulary used
match entities and relationships in the system? If not, perhaps they should.

All in all a very short chapter with some good ideas. Personally I have used the
"telling the story of the system" and "conversation scrutiny” before, often to a good
end. The "naked crc" method to me seems a bit too hand wavey.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

37 of 61

Chapter 18: My test code is in the way

This is a brief chapter, consisting of 2 parts.

The first part, "Class Naming Conventions" gives a very good suggestion for naming
test objects and fake objects.

The second part, "Test Location", discusses where to put production code and test
code - in different directories? in the same file? And it warns that whatever you
choose, if you force people to jump through hoops to write tests then they will just
stop writing tests. Personally I have always had tests built into application source
and used the preprocessor to strip out test code when building a release
executable.

ACCU Mentored Working Effectively with Legacy Code
Developers Project 38 of 61

Chapter 19: My Project Is Not Object-Oriented. How Do | Make Safe
Changes? -

We can make safe changes in any language, but some languages are, err, make
change easier than others. In procedural code often the easiest thing is to do is
think really hard, patch the system and hope that your changes were right.
Provocative?

Given there are relatively few seams to break dependencies, it may help to create
higher level 'covering tests' to get feedback while developing (See Chapter 12). Key
here are pinch point, link seam and preprocessing seam.

An Easy Case
A test for a function that calls no other functions and that changes a variable
passed to it that itself is easily created may be not difficult to write at all.

A Hard Case

In a less easy situation, a function to test does call another function that we'd
rather not have called. One way to intercept the call is to substitute the function
with one of our own that we supply via a library thus applying a link seam.
However if we need several variations of the substituted function e.g. for sensing,
this method quickly becomes tedious.

In C, the macro preprocessor enables a more flexible approach. In the file with the
code of the function to test we use #define to substitute our own implementation
of the function to fake and we terminate the file with main() that contains (or calls
functions with) the test code. A preprocessing define controls the presence of these
additions for testing.

To stay closer to the original code, we can move the above additions into two
include files, with a further improvement to place all additional testing code in a
single include file.

Adding New Behavior

In procedural legacy code prefer to add a new function over directly adding the
code to an existing function. Doing so we can use Test-Driven Development that
may help steer the design in a good direction.

One example shows how a function that performs some computational work with
no external dependencies can be formulated so that it can be tested and integrated
with the rest of the code. Key is to limit the behaviour of the function to what you
can or want to test.

Another example shows how behaviour of a function that contains a sequence of
many external calls can be made testable by applying object-oriented C. Here the
function pointers provide the seam. (...Or write the function as best as you can if
you're not using C ;)

ACCU Mentored Working Effectively with Legacy Code
Developers Project

39 of 61

Taking Advantage of Object Orientation

If you have a program written in The C Programming Language, you can try to
compile it as a C++ program and further transform it to break dependencies. In the
example given, the dependency on a function is replaced with an object of which
we can control the behaviour by providing it via the object's constructor
(Encapsulate Global Reference(339), Parameterize Constructor(379)): A wedge to
break dependencies and move forward.

It's All Object Oriented

Now this section puts a smile on my face. Michael shows that procedural programs
are in effect object-oriented, be it that many only contain one object. If you're
working in a procedural language that has object-oriented extensions, it allows you
to subdivide the system in ways that make it easier to work with. It also lets you
move incrementally towards better object design.

This is an interesting chapter on non-object oriented code in a book about legacy
code. If you like it the other way round, there's "Adding Tests to Legacy Code" in
James W. Grenning's "Test-Driven Development for Embedded C", Addison-

Wesley, 2011.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

40 of 61

Chapter 20: The Class Is Too Big and | Don't Want It To Get Any
Bigger -

Classes get too big; it's a fact of life, or, at least in my experience, it takes a
determined effort to keep them small. And its not just legacy stuff, new code
bloats, too.

Why are large classes a problem?

¢ Understanding. Large classes can lead to confusion. What do you have to change
in all this code?

e Side-effects. What other code will any changes to this method affect?

e Scheduling. Really large classes might have several engineers working on them
with the consequent issues

o Testing. Large classes are a pain to test.

The introductory section sets the scene:-

Some of the techniques that we've met earlier can be used to reduce the size of
over-large classes: Sprout Class and Sprout Method are our main tools. Sprout
Class stops our class getting any bigger; Sprout Method aids us in understanding
something else that the class does.

Refactoring, by breaking down the over-large class into smaller ones is the key
remedy. We use the SRP to identify what are the responsibilities of the smaller
classes.

We can look at the following areas to try and identify those responsibilities:

¢ the name of the class (hopefully, it's not a ...Manager!)

e the class's fields and how the class's methods use them

e method grouping. This is a good idea: try to group the methods into their
individual responsibilities and create new classes from those responsibilities.

But, there's always the danger of over-engineering the solution: the bulk of this
chapter looks at how we can identify responsibilities and then move forward to
create what Michael calls “focussed responsibilities”.

Seeing Responsibilities

The author points out that the ability to see responsibilities isn't restricted to
working with legacy code, it is also a key design skill and takes practise. He
presents seven of heuristics that can be used to uncover responsibilities (therefore,
these will be useful in the design sphere as well):-

Group Methods.

Here, you're looking for commonality of responsibilities - especially those that
appear to be outside of the main class responsibility. I've never done exactly this as
a group activity, but it sounds like it would work as such

ACCU Mentored Working Effectively with Legacy Code
Developers Project

41 of 61

Look at Hidden Methods.

This is an interesting thought: if you see a private method that looks like it should
be tested, then it probably shouldn't be private and also makes a good candidate
for splitting out into another class. This is well illustrated with an example.

Look for Decisions Than Can Change.

[like this one. Do some method refactoring - whilst looking at the assumptions
that have been made when implementing the method. Can methods be extracted
that present a higher-level functionality? Method grouping may lead to a better
class extraction.

Look for Internal Relationships.

Look for relationships between methods and variables. If a subset of the methods
are the only ones that uses certain variables, then this 'lumping' can imply that
these methods and variables are candidates for the extraction of a class.

Michael shows us how to use feature sketches to illustrate a way to discover the
associations between variables and methods. He runs through this technique with
an example, and shows how clustering is discovered. Then what would be the
effect of extracting a cluster of methods and variables into a separate class? Feature
sketches are a great idea; I've done something similar myself but reading this
section makes me think that I should use this technique more often.

Look for the Primary Responsibility.

This reminded me of the “what is our mission?” question beloved of management.
Can we identify what a class does in a single sentence? We're looking for a
statement that supports the Single Responsibility Principle. If a class has features
that aren't really part of its main responsibility, then could they be hived-off to new
classes? Single responsibility violations can occur at the interface and at the
implementation level. At the implementation level, we're looking for extraction of
classes that themselves have a single responsibility. At the interface level, we
looking for segregation of interfaces so that clients are only dependent on the

interfaces that they need. (As Michael earlier pointed out, this is also a key design
skill.)

When All Else Fails, Do Some Scratch Refactoring.

We've met scratch refactoring before in Chapter 16. It's another technique that we
can use to discover responsibilities in a class.

Focus on the Current Work.

[think that this is another way of saying: do what you need to do when making
changes. If you've learnt that there are many more distinct responsibilities that
could be changed, don't necessarily do all of them but try to remember what you've
learnt. What do others get from this paragraph?

Other Techniques

Apart from the seven heuristics listed, what else can we do? Learn from others to
improve our skills. Read code: look how others name classes and methods. Read
books about design patterns. (We just need to find/prioritise the time....)

ACCU Mentored Working Effectively with Legacy Code
Developers Project

42 of 61

Moving Forward
OK. So we've used the heuristics and have identified the separate responsibilities of
your bloated class. What do we do next?

Strategy

Rather than taking time-out to split our big class (or classes) down into new single-
responsibility a complete set of single-responsibility classes, Michael suggests the
better approach is to ensure that the team understands the responsibilities of the
class and split out the other classes on an as-need basis.

Tactics

Realistically, we'll start extracting at the implementation level. That way the clients
of our big class won't need to change. So, we should identify all of the methods and
instance variables that we'll have to move - giving us a good idea of the methods
that require tests. Implementing these tests on big classes in a test harness can be
tricky. We can use the techniques previously identified in Chapters g and 10 to help
here.

If we can get the tests in place, then Michael refers us to Martin Fowler's
“Refactoring” book to perform the class extraction.

If we can't get the tests in place, then Michael presents a procedure for extracting
the responsibility into a separate class. This involves extracting method bodies to
renamed methods in the existing class and moving them along with instance
variables to a separate area in the class declaration. Then moving the renamed
methods and instance variables to the new 'responsibility’ class and wiring it all up.
We get advice on avoiding some OO gotchas.

After Extract Class

Michael warns us, rightly, against being overambitious with extracting classes.
Again, he suggests moving towards a better design rather than plunging pell-mell
into trying to do it all at one.

This is another great chapter. We've probably used some or all of the techniques
that Michael provides at some point. It's good to read about the rationale for their
use and to be warned about their pitfalls.

Yet more reason to keep “Working Effectively with Legacy Code” close to hand.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

43 of 61

Chapter 21: I'm Changing the Same Code All Over the Place -

Michael opens this chapter by saying This can be one of the most frustrating things
in legacy systems.... This sentiment is widely echoed in the literature: Hunt &
Thomas [2000] raise The Evils of (code) Duplication as the primary principle in
their book The Pragmatic Programmer; Fowler & Beck [1999] are equally forthright
in the seminal book Refactoring - Number one in the (bad code smells) stink parade
is duplicated code.

Unsurprisingly, Michael proposes refactoring as the solution to this problem. But
he stresses the importance of not over-thinking the process. Removing duplication
doesn't have to be as difficult as reengineering or re-architecting; it can be done in
small incremental chunks, using a fairly mechanical process. But is the effort worth
it? Michael promises us a surprising result. He then takes us on a journey through a
worked example to illustrate the process.

Step Zero

The first thing we need is a set of tests that we'll run after each refactoring. We're
sufficiently far through the book now that Michael assumes we know enough
techniques to get these tests in place, and omits their description for brevity.

First Steps

This is where over-thinking needs to be avoided. Start by removing small pieces of
duplication. The more small pieces you remove, the easier it becomes to see large
areas of duplication.

Deciding Where to Start

The truth is, it doesn't make much difference.... But thinking about how you'd name
new methods that result from your proposed refactoring can give you clues as to
whether your refactoring will help to make more sense of the code, or not. Also,
follow the start small heuristic.

Superclass
If you have two classes doing similar things at the same structural level, then you
can often create a single superclass to replace duplicated code.

Methods

When two methods look roughly the same, try to isolate their differences and
extract them to new methods. If you can make the remaining original methods
exactly the same, then you can get rid of one of them.

Abstract Methods

If you've used a Superclass to reduce duplication, it can help to introduce abstract
methods into the Superclass, with implementations in the subclasses that
incorporate only the differences between the subclasses.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

44 of 61

Generalisation

Where two methods in different classes perform the same operation, but on
different sets of data, it may be possible to make the method more general and
move it into a single superclass. The subclasses then just need to pass their own
data sets to the generalised method to achieve the same functionality.

Renaming Classes

The result of pushing duplication upwards into Superclasses is likely to change the
role or focus of the original subclasses. It's a good idea to review the class names
and, if necessary, change them to ensure they are self consistent. Michael
recommends avoiding abbreviations in names. If they are used consistently they
may do no harm, but it's simpler not to use them.

Surprise!

Remember how we were promised a surprise? No, I didn't either until I reread this
chapter to write this review. The startling thing that you discover when you start
removing duplication zealously is that (good) designs emerge. The process of
removing duplication across classes produces small, well focused methods. Each
method does something unique. Michael refers to this property as orthogonality. |
recognise it as low coupling - something we would hope to design into our code,
but which here has emerged through the application of a fairly low-level,
mechanical process. In other words, we get the benefits of improved design
without having to think through how to achieve it!

Open/Closed Principle

Bertrand Meyer [Meyer 1988] articulated this principle that well implemented
classes should be open to extension (through inheritance) but closed to
modification. To change or add functionality we shouldn't need to modify existing
class implementations, but we should be able to reuse them through inheritance.
When we remove duplication, our code... starts to fall in line with the Open/Closed
Principle.

References

[Fowler 1999] Fowler, M. Refactoring, Addison Wesley Longman Inc, 1999.

[Hunt 2000] Hunt, A & Thomas, D. The Pragmatic Programmer, Addison-Wesley,
2000.

[Meyer 1988] Meyer, B. Object-Oriented Software Construction, Prentice Hall, 1988.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

45 of 61

Chapter 22: 1 Need to Change a Monster Method and | Can’t Write
Testsfor It »

Erratum: the first sentence on page 306 should be:
“Chances are, you will, too. I skeletonize when I feel that the control will
need to be refactored after it is clarified.”

First off, you've got large methods (oh yes I do). Sometimes you can avoid having
to refactor those methods for a specific change by using Sprout Method and Sprout
Class, way back from chapter 6. But even if you can it’s a bummer, because the
large method is still there, ready to suck up time understanding things all over
again next time you have to go do some work there.

At some point a method becomes so large and complex and unwieldy it’s not even
just large anymore. This chapter is about techniques for dealing with monsters,
which can also be applied to your simple everyday large methods.

Varieties of monsters

Bulleted Methods:

There won’t be a lot of deep indentation, just a sequence of code chunks. “Do A,
now do B, now C, ...”. Of course it’s not quite so clean because there are probably
temporary variables used throughout the sections (and they might be less
temporary than they look).

Snarled Methods:

In the simple case, this is something dominated by a single large indented section.
But more likely that section will in turn have different indented sections at
different levels of indentation, which makes it that much harder to reason about.

Of course nothing prevents a method from being both. Regardless, the snarl
makes it difficult to figure out how to write tests, since it’s hard to tell what the
behavior is even supposed to be. So how can we break behavior into chunks small
enough to understand?

Tackling monsters with automated refactoring support
Specifically, a tool that extracts methods for you without introducing errors. I use
Visual Assist X to do this in C++ and it definitely makes life better.

Michael notes that when you start working with this kind of tool, you should resist
the temptation to make little manual embellishments along the way - reordering
statements to make them more extractable, breaking up expressions - because
these can’t be checked for safety like the automated extraction. If your tool
supports variable renaming you can use that (VAX does, for example), but if not
stick to the automated refactorings for now. The idea is to perform only safe
refactorings until you can get tests in place. I can attest that this temptation is
really hard to resist.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

46 of 61

The goals of these extractions should be:

1. Separate logic from awkward dependencies
2. Introduce seams to make it easier to get tests in place for more refactoring

Conspicuously absent in the list of goals is the first one I think of when I think
refactoring: break things up into logical units. That’s getting ahead of ourselves:
first we need to be able to test so we can preform those more complicated
refactorings safely.

Sometimes this work can seem like it’s not getting you much, but as you extract
logic into methods and give them names you learn more about the structure, how
you can leverage it for testing, and where you want to go next (for example, back to
another chapter’s technique for the next step).

The manual refactoring challenge

There’s a lot to go wrong when extracting a method by hand. However, once you
can build that code in a test harness there are ways to move forward with more
confidence.

Introduce sensing variable:

If the behavior you're looking at is hard to sense directly, you can add a sensing
variable to the class, which is just a variable you'll set when you perform the action
you want to sense. Your test then only has to look at the sensing variable instead
of some downstream result of the behavior. After you've done your refactoring,
you remove the sensing variable and the tests that work with it.

It’s good to keep your sensing variables and tests around for a full refactoring
session, not just a single refactoring, so you can easily back up and do earlier
extractions differently if that’s where the refactoring leads you.

Extract what you know:

Start small, with things you know you can extract safely. Small here means two or
three (ok, no more than five) lines of code: a little chunk that’s easy to name. In
addition to line count you want to keep the coupling count (how many values go
into and out of the method you extract, through its interface) low. The best
coupling count, of course, is 0, which basically represents a command to the object
to do something. Asyou name these things you can gain insight into what they're
doing.

As you extract, if the coupling count is more than o consider using a sensing
variable if it helps, and write a few tests for the extracted method. Watch out for
parameter/return type errors in particular.

Michael suggests starting with the o-count methods to get a better sense of the
general structure and seeing where things stand then, rather than moving right in
to more coupled sections. It may give you enough insight to start another
refactoring approach. He also notes that even though a bulleted method can seem
like an obvious candidate for finding o-count methods in the chunks, you may be

ACCU Mentored Working Effectively with Legacy Code
Developers Project

47 of 61

thwarted by temporary variables. It pays to look for low-count methods within or
across chunks too.

Gleaning dependencies:

This can be used when your method has some code that’s secondary to the main
purpose. In addition it’s not too complicated, and it will be obvious if you break it.
Presumably the primary behavior is more complicated and it’s harder to detect if
your refactorings break it. In this case you can write tests to cover the primary
behavior, perhaps using a sensing variable. Then you can extract away the
secondary behavior (only primary and secondary in that method? what luxury!)
with confidence that you're not affecting the main part. This is especially useful
when critical behavior is tangled up with other things you'd like to extract.

There are several definitions of glean:
1. Extract (information) from various sources:
the information is gleaned from press clippings.
2. Collect gradually and bit by bit:
objects gleaned from local markets.
3. Gather (leftover grain or other produce) after a harvest:
the conditions of farm workers in the 189os made gleaning essential.

[like to think Gleaning Dependencies takes it's name from the third definition: the
stuff left over after the main body is under test is the gleaning to be gathered up
and removed. Not to mention working with a monster method can really feel like
this: http://en.wikipedia.org/wiki/The_Gleaners

Break out method object:

You may notice that you already have variables that would be perfect for sensing
purposes, but they’re local to the method you're working on. You wouldn’t want to
promote them to instance variables just for testing, of course. But by creating an
object whose sole purpose is to do the work the method does, you can promote
local variables at will without muddying the waters in the initial class. You create a
class with a constructor that takes the parameters of the method and has a single
method containing the logic from the monster method.

An advantage of this over a simple sensing variable is that you get to keep the tests
your write for this new object: the sensing variable is also a part of the regular
code.

Strategy
These are some directions to take when working on monster methods.

Skeletonize methods:

Extract each bit of logic (say, a condition or the body of the conditional) into
methods. You're left with a skeleton, that is the control structure and delegations
to other methods, but not the meat that does the work. This may help to
reorganize the control logic.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

48 of 61

Find sequences:

On the other hand, it may work better to extract a condition and its body together
into a method. This can help notice common sequences of operations.

Skeletonize and Find Sequences can be complementary, even though they're at
odds with one another at first glance, and both are applicable to any kind of
monster. Although Michael tends towards Find Sequences in bulleted methods
and Skeletonize for snarled ones.

Extract to current class first:

As you start extracting and naming, you may notice that the extracted methods
don’t really belong in the current class. For example, if the new method name
includes the name of one of the variables it uses, that method may really belong in
the class of that variable. Resist the temptation to move it immediately - stick to
small changes that are easy to undo if you decide to choose a different refactoring
direction. You can always move that method to a new class later.

Extract small pieces:

This is a general reminder of a recurring theme: start small. Even though it seems
like 3 lines here or there won’t make any difference in a 3000-line monster,
eventually that helps you see the function differently and can offer ideas on how to
move forward. This is easier and safer than trying to break something into big
chunks right from the start.

This is interesting: my initial thought would be that a first-pass refactoring would
involve, say, breaking down a 3000-line monster into a few 1000-line monsters that
have a slightly more limited scope. But I can see now that first off, I'd almost
certainly break something, and there’s no way I could test the mini-monsters that
come out of it.

Be prepared to redo extractions:

Since there are so many ways to break down a huge function, don’t worry if you
realize the best way to move forward is to undo some extractions and approach
them differently. It’s not wasted effort; the first extractions helped you see a better
way.

[like how this chapter provides a number of simple rules and techniques for
dealing with overwhelming methods. It makes getting them under test seem
downright possible! The timing is perfect, because this week I plan to spend some
time on a monster function in the code base I work on (both snarled and bulleted,
by the way).

ACCU Mentored Working Effectively with Legacy Code
Developers Project

49 of 61

Chapter 23: How do | know that I'm not breaking anything e

For me, the main message to take home from this chapter is: do one thing at a
time.

Michael starts by drawing parallels between a mechanical machine and a computer
program. The machine will break down through wear and tear, but a computer
program will break down when we change it.

Hyperaware Editing

When editing code you can be reformatting, adding comments or make functional
changes. Michael stresses again about tests and feedback. He presents an
interesting idea on IDE's that run tests every time you press a key and calls it edit-
triggering testing. Getting feedback increases your confidence (whether it is
through tests or by pair programming (which shouldn't exclude writing and
running tests)).

Singe-Goal Editing

It may look smart to be able to store the architecture of a system in your mind and
knowing all the side effects if you change the system in one place. But it also looks
highly improbable. It is better to focus on one task at the time and not to be
seduced to 'fix' other problems on the way. Michael gives some ideas on how to
avoid such behaviour e.g. by keeping a list of functions that need attention after
the original task has been completed.

Preserve Signatures

Refactoring is in general a rather invasive way of editing and especially when
dependencies need to be broken (and we have no tests available yet) we must be
very conservative on making changes. Again, the focus is on doing one thing at the
time and not doing too much. Break your dependency, but leave all the other
refactoring until you have tests in place. Michael shows how he uses 'Preserve
Signatures' to minimise the risk on getting parameters in the wrong order or with
wrong types.

Lean on the Compiler

Changing types of variables or commenting out functions will give compilation
errors so that the locations where changes need to be made become visible. One
must be careful though. E.g., when commenting out a member function that
overrides a concrete implementation in a base class, the code will cleanly compile
and probably do the wrong thing.

Pair Programming

One of the few places where the book shows its age. Still, it is good observation
that dependency breaking is like surgery and that doctors don't work alone in
complex procedures. So, get that second pair of eyes to help you.

Chapter 24: We Feel Overwhelmed, It Isn't Going to Get Any Better (21 November
2011, John Penney)

ACCU Mentored Working Effectively with Legacy Code
Developers Project

50 of 61

Chapter 24: We Feel Overwhelmed, It Isn't Going to Get Any Better
e John Penney, 21 November 2011

Part II of WEWLC concludes with a short essay that reflects upon how easy it is to
become dispirited as a programmer, but also how it is possible to enjoy and relish
working with even the most deep and dark legacy code.

Michael talks about how most of us enter the world of programming in our youth
full of enthusiasm and energy. I think that's true of most of the programmers I've
worked with: it certainly includes me. As we get older, however, other distractions
in life take precedence (family, mortgage, you know the stuff!) and it's tempting to
view it as Just a Job and especially to view the mountain of legacy code you face on
a daily basis with some despair.

But is the grass really any greener on a greenfield project? Michael graphically
describes how a shiny new system can degrade into the same sad state as it's
predecessor, or how a hopeful replacement system can falter as the changing state
of the original system mean the greenfield team are chasing an ever-receding goal.
Greenfield projects need TDD, continuous delivery and the like just as much as
legacy projects. And - depending on the politics of your workplace - there can be a
greater pressure on a greenfield team to achieve, which can make the work
stressful and unpleasant.

I can agree with Michael's suggestion too that TDD'ing some code outside of work
can be invigorating. A couple of years ago I learned Python and improved my TDD
skills to develop a program outside work: this little project really raised my spirits
and I started to enjoy the day job more as a result, seeing opportunities to use little
snippets of the stuff I'd done at home.

Michael also recommends connecting with the larger community. Of course, that's
what we're all doing now, on this group! Personally, I'm fortunate enough to live in
a major city and can attend tech-groups where like-minded folk "play" with code or
ideas for an evening: this again gives me little insights into how I can do my day job
a little better. And it goes without saying that the ACCU conference is another
excellent opportunity to stoke up the fires of your enthusiasm!

This chapter also touches on how the team's attitude can make even a massive,
daunting legacy system an enjoyable experience. Michael suggests collectively
"swarming" on a nastiest bits of code and getting them under control. That would
give the team a collective sense of achievement, and also make them appreciate
what's possible. I think positive metrics might help here too: a canny team leader
might point out that the number of unit tests is mushrooming, or that code
coverage is steadily improving.

My conclusion: what's important in any job is to feel you're making a difference,
and legacy code offers unrivaled opportunities to do just that.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

51 of 61

Chapter 25: Dependency-Breaking Techniques, part1l «

This chapter pretty much is section III of the book, and is a directory of
dependency breaking techniques that are applicable to code that is not yet under
test. Each item finishes with a detailed list of steps, which if followed carefully,
should prevent errors caused by the very act of editing. Even so, whilst editing,
remember to bear in mind Chapter 23, "How do I know That I'm Not Breaking
Anything?".

The book points out that some of the techniques might "make you flinch" and
some certainly go against good practice. But remember we are using these
techniques as stepping stones to getting the code under some form of test. Once
under test we can increase the pace of refactoring, ending up at a good place. At
that point, traces of the flinch-inducing stages should have vanished.

Adapt Parameter

As the name suggests, this is the application of the GoF Adapter Pattern to a
troublesome parameter. The trouble is usually that the parameter is hard to create
during test. We should use this approach when Extract Interface won't work.

We change the code to use an adapter interface in place of a specific instance of a
parameter type. The production implementation uses the old parameter type, but
the test implementation can do what we like.

A nice side effect is emphasised: moving towards interfaces makes the code easier
to read as we communicate responsibilities rather than implementation detail.

A common problem in legacy code is not enough abstraction layers, so adding one
will usually help in the grand scheme of things too.

Break Out Method Object

If you have a large method that can't be made static (Expose Static Method),
consider breaking the method out into a new class. In the original code the method
is accessed via an instance of the new class. [I think this is a form of functor ?]. The
new class becomes a sort of life support system for the unwieldy method, and over
time can grow into a more appropriate class as the method is broken down, and
other code joins it.

The constructor for the new class takes a reference back to the original object, and
all the parameters for the original method. The parameters are saved as instance
variables, and the method then takes (void). Any interaction (methods or
variables) between the method and the original class now go via the calling-object
reference. We lean on the compiler to find these.

We now have a sort of inside out class hanging off the side of the original one: the
old code with its guts hanging out. There is one further step that starts to make
sense of the mess, and that is to Extract Interface on the original calling class so

ACCU Mentored Working Effectively with Legacy Code
Developers Project

52 of 61

that the new class deals with the interface, not the (old) concrete type. We lean on
the compiler again, and it tells us that the methods on the interface are those of
the original class that the new class calls, plus any getters for variables. Its a bit
circular, but the diagrams and code in the book make it clear.

Once the dust has settled, we can make use of a GOOS idea: let the code talk to us.
We will probably find other methods that belong in this new class, and it might
even end up being the major player with the original, troublesome, class shrinking
into the shadows. The large method should also be subdivided, but all in a new
cleanly interfaced, testable, home. What ought to happen is that some kind of
design will start to appear and we can continue to refactor the code towards this
now that it can be tested properly.

I'd never read about, considered, or even discovered this one for myself, and once
I'd got my head round it, it is very elegant. Its a nice application of OO principles,
and I'll bet its very satisfying to use.

Definition Completion

This is basically the common or garden C/C++ stub (using the linker seam).
Provide a test implementation of a function or class in the .c/.cpp file, given a
production .h file.

It is only possible in some languages, and is a maintenance burden if the stub is
non-trivial. It should be avoided unless there are no better seams to attack, and
even then you should plan to get rid of the duplication once the code is under test.

Encapsulate Global References

If you have problems with globals during test you can try to make them act
differently, use the linker seam to link to different globals in the test build, or
decouple by encapsulating them in a class.

A very common code smell could appear here: if a number of globals are always
used together, they all belong in the same class.

Think about what you name this class, but don't worry too much since it can
always be re-named. The larger the scope, the harder it is to choose the right name,
and global scope is the worst of all. If the right name is already taken, consider
renaming the existing class.

[Why do they have the same name? Are they trying to be the same thing? Maybe
the globals should be part of the existing class? Think before you act.]

Once the globals are in a class we can remove the originals and use the compiler to
tell us where the new class is required. At this point we haven't changed the
behaviour or signature of any code, so it all should have gone smoothly. Now we
can attempt to inject the dependency (Parameterise from Above!) into the code we
are testing: then we can fake it or use other test techniques.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

53 of 61

We are encouraged to make small steps at first, while we get sufficient global-
using code under test. 'Sufficient’ is context specific, but once we are protected by
tests, we can start refactoring the code, and the class holding the globals.

When dealing with global (i.e. free) functions, rather than variables, we can create
an interface under which production and test versions can exist. Initially the
production version will simply delegate to the old global function.

There are other techniques and seams that can be used to deal with globals, but
encapsulation is the easiest to manage, and yields the most explicit seams.

Expose Static Method

Some classes are impossible to instantiate in a test harness. If we are lucky, there
might be a method that uses no attributes or methods of its class. These can be
made static and called without instantiating the class. [If you are lucky your IDE or
lint-like tool will point this out to you for free.]

There is an interesting point made here: to be testable the method must be public.
But why are we exposing some internal part of the class that the original design
didn't expose? Static methods are arguably (and in some cases, actually) not part of
the class. [They are dressed up global methods, IMHO!] It is better to make the
method testable that to maintain some (quite possibly inappropriate) design
standpoint. Later, protected by tests, the static code might find its way into a new
home. There is always the option of making the static method protected, then
access it through a testing subclass: Subclass and Override Method (later in the
chapter).

Extract and Override Call

If the code we wish to test makes calls to a dependency that is hard to create in a
test harness, or we want to sense through a class that is closed to us, we can use
this technique.

The troublesome call is replaced by a call to a new, virtual, method on the same
class. This new method makes the same call as before. In the test environment we
create a subclass with an override for the new method. Here we can do what we
like.

It is pretty simple, and straightforward to implement. In some cases Replace Global
with Getter, or Parameterize Constructor might be more appropriate: they are
presented later in the chapter.

Extract and Override Factory Method

This technique circumvents object creation in the constructor, but requires the
language to allow calls to more-derived virtual functions from the constructor. C++
does not allow this. All is not lost because there are alternatives for C++, one being
the next item.

The "vexing" object creation code is placed in a virtual method which is called in
the constructor. Extract and Override Call can then be applied.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

54 of 61

Extract and Override Getter

If we want to manipulate access to a single instance variable during test, we can
convert the class to always access it through a virtual getter rather than directly.
[Note that later we are told that a downside is possible use before initialisation.
This can be prevented by leaning on the compiler: simply rename the variable and
resolve all resulting errors with calls to the getter. This trick also happens to make
the technique very easy to implement.] In the test harness, we apply Extract and
Override call to this getter, then manipulate or replace the instance variable
however we wish.

[The book presents this technique as a solution for a class which creates an object
at construction but does nothing else to it until later. I think it is more generally
applicable, but there are details specific to the object creation case ...]

We can postpone the actual creation of the object with a lazy getter. In the test
version the overridden getter can then eliminate creation of the original object
entirely, replacing it with a test instance. [For this to work polymorphically I
presume the return type of the getter would have to be an interface, or at the very
least the type of the original object being created should be open to derivation.]

This technique wins over Extract and Override Call if there are multiple
problematic calls to override on the same object.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

55 of 61

Chapter 25, Dependency-Breaking Techniques, part 2 -

Continuing with this long (but nonetheless very interesting) chapter...

Extract Implementer

This technique is used when we are extracting an interface but the name we want
to use for it is already the name of the class and the IDE does not provide
refactoring tools that may be helpful. To Extract Implementer, first we make a copy
of the declaration of the original class and give it a different name[1]. Then, we
delete all non-public methods and all variables from the original class, effectively
turning it into an interface, and make all of the remaining public methods abstract.
At this point, we can revise if all the imports in the interface file are really
necessary (see Lean on the Compiler). Then, we make our production class
implement the new interface and compile it to make sure it properly implements
every method it should. After that, we compile the rest of the system to find and
replace all the occurrences of the original class. Finally, we recompile everything
and test.

This technique, Michael notes, is simple to apply when the original class doesn't
have any parent or child classes in its inheritance hierarchy. When it does, we need
to get more sophisticated or just go with the more direct Extract Interface.

[1] Michael makes an important point about naming being a key part of design. I
agree completely: good design starts with good names. I also normally dislike
having prefixes in type names (like an I for interfaces), but at the same time
understand it may be useful to have a naming convention for the classes we've
extracted an interface from.

Extract Interface

This technique, not surprisingly, is used when we want to extract an interface from
a class. To Extract Interface, first we create a new, empty interface with the name
we want to use. Then, we make the class we are extracting from implement the
interface. After that, we change the place where we use the object so that it uses
the interface rather than the original class. Then, we compile the system and
introduce a new method declaration on the interface for each method use that the
compiler reports as an error (again, Lean on the Compiler).

Introduce Instance Delegator

Michael introduces this section of the chapter by noting that people use static class
methods for a variety of reasons. Two of the most common ones are writing a
Singleton and creating a utility class (i.e., a class that doesn't have any instance
variables or instance methods, like the ubiquitous Math class in languages that do
not support free functions).

Sometimes, we have static methods that are problematic to use in a test. Introduce
Instance Delegator is a technique that helps with that and goes like this: first, we
identify the problematic static method and create an instance method that

ACCU Mentored Working Effectively with Legacy Code
Developers Project

56 of 61

delegates to the static method on the class (remembering to Preserve Signatures).
Finally, we find the places where the static methods are used in the class under test
and use a dependency-breaking technique like Parameterize Method to supply an
instance at the location of the static method call.

Introduce Static Setter

This technique helps testing code with singletons[2]. In order to apply it, first we
decrease the protection of the constructor so that the singleton class can be
subclassed from. Then, we add a static setter to the singleton class that takes a
reference to the singleton class (of course, it should properly destroy the previous
singleton instance). If access to private or protected methods in the singleton is
needed for testing, we need to consider creating a subclass or extracting an
interface on the singleton class and supplying a setter that accepts an object with
that interface.

[2] Personally, I think the best way to avoid problems when testing code with
singletons is to not write them in the first place unless _really needed. In my
experience (game code, where you see Renderer singleton classes and hundreds of
other FooManager singleton classes everywhere), singletons are heavily misused as
an unneeded abstraction over plain globals in a lot of situations where restricting
the code to a single instance of the class makes it impossible for certain future
requirements to be met in a sane way and can be much more easily enforced by
convention (if you need a single instance, just write one! And if tomorrow we
actually need _two_ Renderers, we can have that because we decided not to single-
instance-lock the design for some of the more fundamental concepts in our
codebase). Also, in a lot of these cases, not even the global access is justified.

Link Substitution

This one is a simple technique useful to fake a set of functions or classes. The
process goes as this: first of all, we identify the functions or classes that we want to
fake. Then, we write alternative definitions for them. Finally, we change our build
so that the new definitions are used rather than the original, production versions.
Michael notes that the best libraries to fake are those containing functions whose
return values you don't often care about.

Parameterize Constructor

This technique is used when we want to replace an object that is currently being
created inside the constructor of a class. The easiest way to do this is to pass the
object from the outside. We need to follow these steps: first of all, we identify the
constructor we want to parameterize and write a copy of it. Then, we add the
desired parameter to the constructor for the object whose creation we are
replacing. Finally, we remove the body of the old constructor and replace it with a
call to the new constructor (in languages supporting delegation of constructors,
C++ not being one of them up until recently with the new standard).

Parameterize Method

This technique is used when we want to replace an object that is currently being
created inside a method. Again, as was the case with Parameterize Constructor
(which could be considered a particular scenario for this technique), the easiest
way to do this is to create the object externally and pass it to the method. We need

ACCU Mentored Working Effectively with Legacy Code
Developers Project 57 of 61

to follow these steps: first of all, we identify the method that we want to replace
and write a copy of it. Then, we add the desired parameter to the method for the
object whose creation we are replacing. Finally, we remove the body of the old
method and replace it with a call to the new, parameterized method.

ACCU Mentored Working Effectively with Legacy Code
Developers Project 58 of 61

Chapter 25, Dependency-Breaking Techniques, part 3 -

Continuing Chapter 25, there are yet more ways you can refactor your codebase to
get it under test, with minimal chance of breaking something in the process.

I'd really like to see summaries of when to use the refactorings here - after the rest
of the book was organised as a series of problems with solutions, a series of
solutions feels slightly weird. That, and when I'm working in a Java codebase, some
of the refactorings are for different languages entirely, so not immediately helpful.

Primitivize Parameter

This is for when you are trying to add new functionality to a hard to create object,
which would use arguments that are also hard to create. However, only certain
properties of the arguments are needed, so it's possible to create a simpler
representation of the information you need and pass that to the new function.
Another method can convert between the two representations.

It's a horribly hacky way of doing it, but at least allows you to get most of the new
code under test.

Pull Up Feature

If there are some methods you want to test on a class which can be separated from
the problematic dependencies, then try creating an abstract class, making the
current class subclass it, and then pull up the 'nice' methods into the new abstract
class. The abstract class can then be subclassed during testing.

Push Down Dependency

For classes with problematic dependencies in a lot of methods, instead of trying to
subclass and override it might be necessary to make the current class abstract, and
then push all the problematic dependencies down into a concrete class, keeping
the testable parts in the abstract class. This way the abstract class can be
subclassed during testing to avoid the dependencies.

[t might make sense to move the methods in the subclass out to a different class
later, if they handle a specific set of behaviour.

Replace Function with Function Pointer

This is for breaking dependencies in procedural languages with function pointers,
like C. I haven't used function pointers, so hopefully this makes sense. This
refactoring is also flagged as dangerous - many teams don't like to use function
pointers because of possible corruption.

Here you replace functions with pointers to functions, which means that during
testing it's possible to change the functions pointed to.

Replace Global Reference with Getter

ACCU Mentored Working Effectively with Legacy Code
Developers Project

59 of 61

Instead of using a global reference directly (like a static method in Java) access it
via a getter, which can be overriden. Then you have a seam you can use when
testing, subclassing and overriding the getter.

Subclass and Override Method

Probably the core refactoring to get code under test. Find the methods which are
causing problems in testing then modify them so that you can override them.
Create a subclass of the class you want to test and override the problem methods
so that they can be used in testing - either making them do nothing or record the
calls for testing.

Supersede Instance Variable

This is given as a way to get around the fact that you can't use Extract and Override
Factory Method in C++. This is for removing a problematic object created in a
constructor and replacing it with a fake object for testing.

In Extract and Override Factory Method instead of creating the object in the
constructor, create it in a factory method called by the constructor. To test you can
use a subclass which has the factory method overriden to provide a fake object.

However C++ won't let you call virtual functions from the constructor. So create
the problematic object as normal. Add a new method which lets you set the object
to one you supply, and use this in your test code to remove the problem.

Name the method in the pattern supersedeProblemObject() because that way it's
easy to spot if anyone has been using a method from this refactoring in production
code.

Template Redefinition
A slight problem for summarising this - I've never used templates in C++, and
haven't done that much work with the language.

Template redefinition is another way to replace a problematic object with one that
is more suited to testing. Instead of using inheritance, turn the class into a
template, taking a generic version of the problematic object as a parameter. Then
for normal code supply the actual object, and for test code put in a fake or sensing
object.

To avoid having to use the template-style class name everywhere, a typedef is used
to map it to the non-generic class name.

Text Redefinition

In Ruby you there's a way to replace a method without using subclass and override
- you can just redefine it on the fly, before running tests using it. Import the class
you want to modify into the test file, then provide an alternate definition for the
method.

One caveat: this method stays as your test version for the rest of the tests. This
sounds like a good way to introduce a confusing test issue.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

60 of 61

Appendix e

In the Appendix Michael rounds off with an example of a specific refactoring
("Extract Method"), as described in Fowler's book.

It struck me as a little odd that he included this refactoring. It might make sense in
context, if refactoring was still little appreciated at the time the book was written. I
suspect that if the book were released today less attention would need to be drawn
to the mechanics of it -- unless to highlight that people don't necessarily think
about the mechanics of their refactoring tool of choice does for them. Then -- I'm a
C# developer.

Most of Michael's approaches however -- especially the seam metaphor, which I
use more and more every day -- aren't trivially bundled with a refactoring tool.

"Extract Method" is described in clear and useful detail, but I think perhaps the
most useful thing the Appendix does is bring to mind the difference between
relatively safe and relatively unsafe refactorings. When I think back over the book,
I've gained a great deal from Michael's description of processes that help bring
untested code under test -- refactorings in their own right that can be applied with
some confidence without a safety net. From chapter 1:

"Changing code is great. It's what we do for a living. But there are ways of changing
code that make life difficult, and there are ways that make it much easier. In the
industry, we haven't spoken about that much. The closest we've gotten is the
literature on refactoring. I think we can broaden the discussion a bit and talk about
how to deal with code in the thorniest of situations. To do that, we have to dig
deeper into the mechanics of change."

Digging deeper into the mechanics of change can only make us more self-aware as
developers, and that's a very good thing.

ACCU Mentored Working Effectively with Legacy Code
Developers Project

61 of 61

	Working Effectively with Legacy CodeBy Michael C. Feathers
	Foreword • Ian Bruntlett, 8 June 2011
	Preface • Ian Bruntlett, 8 June 2011
	Chapter 1: Changing Software • Ian Bruntlett, 8 June 2011
	Chapter 2: Working with Feedback • Martin Moene, 20 June 2011
	What is Unit Testing?
	Higher Level Testing
	Test Coverings
	The Legacy Code Change Algorithm
	Closing Remarks
	Notes

	Chapter 3: Sensing and Separation • Richard Barrett, 27 June 2011
	Fake Collaborators

	Chapter 4: The Seam Model • Andrew McDonnell, 4 July 2011
	Preprocessor seam: Use the preprocessor to switch behavior.
	Link seam: Use the linker to switch behavior.
	Object seam: Use function resolution to switch behavior.

	Chapter 5: Tools • Ken Duffill, 11 July 2011
	Chapter 6: I Don't Have Much Time and I Have to Change It • John Penney, 17 July 2011
	Sprout Method
	Sprout Class
	Wrap Method
	Wrap Class
	Conclusion

	Chapter 7: It takes forever to make a change • Ann Napier, 25 July 2011
	Understanding
	Lag Time
	Sidenote:

	Breaking Dependencies
	Build Dependencies
	Conclusion

	Chapter 8: How do I add a feature? • David Pol, 1 August 2011
	Test-Driven Development (TDD)
	Programming by Difference

	Chapter 9, I Can't Get This Class into a Test Harness • Matthew Jones, 8 August 2011
	The Case of the Irritating Parameter
	The Case of the Hidden Dependency.
	The Case of the Construction Blob
	The Case of the Irritating Global Dependency
	The Case of the Horrible Include Dependencies
	The Case of the Onion Parameter
	The Case of the Aliased Parameter

	Chapter 10: I can't get this method into a test harness • Tim Barrass, 16 August 2011
	The case of the hidden method
	The case of the 'helpful' language feature
	The case of the undesirable side effect
	Chapter 10: Summary

	Chapter 11: I need to make a change • James Byatt, 22 August 2011
	Summary:
	"Encapsulation isn't an end in itself"
	And finally...

	Chapter 12: I Need to make many changes in one area.Do I have to break dependencies for all the classes involved? • Chris O'Dell, 29 August 2011
	Summary
	Review
	Interception Points
	Judging Design with Pinch Points
	Pinch Point Traps

	Chapter 13: I need to make a change, but I don't know that tests to write • Joes Staal, 5 September 2011
	Chapter 14: Dependencies on Libraries Are Killing Me • David Sykes, 12 September 2011
	Chapter 15: My application is all API calls • Joes Staal, 20 September 2011
	Chapter 16: I Don't Understand the Code Well Enough to Change It • Timothy Wright, 26 September 2011
	Notes/Sketching
	Listing Markup
	Separating Responsibilities
	Understanding Method Structure
	Extract Methods
	Understanding the Effects of a Change

	Scratch Refactoring
	Delete Unused Code

	Chapter 17: My Application Has No Structure • Tim Penhey, 5 October 2011
	Telling the story of the system
	Naked CRC
	Conversation Scrutiny

	Chapter 18: My test code is in the way • Ian Bruntlett, 10 October 2011
	Chapter 19: My Project Is Not Object-Oriented. How Do I Make Safe Changes? • Martin Moene, 17 October 2011
	An Easy Case
	A Hard Case
	Adding New Behavior
	Taking Advantage of Object Orientation
	It's All Object Oriented

	Chapter 20: The Class Is Too Big and I Don't Want It To Get Any Bigger • Richard Barrett, 24 October 2011
	Seeing Responsibilities
	Group Methods.
	Look at Hidden Methods.
	Look for Decisions Than Can Change.
	Look for Internal Relationships.
	Look for the Primary Responsibility.
	When All Else Fails, Do Some Scratch Refactoring.
	Focus on the Current Work.

	Other Techniques
	Moving Forward
	Strategy
	Tactics

	After Extract Class

	Chapter 21: I'm Changing the Same Code All Over the Place • Nigel Evans, 31 October 2011
	Step Zero
	First Steps
	Deciding Where to Start
	Superclass
	Methods
	Abstract Methods
	Generalisation
	Renaming Classes
	Surprise!
	Open/Closed Principle
	References

	Chapter 22: I Need to Change a Monster Method and I Can’t Write Tests for It • Andrew McDonnell, 7 November 2011
	Varieties of monsters
	Bulleted Methods:
	Snarled Methods:

	Tackling monsters with automated refactoring support
	The goals of these extractions should be:

	The manual refactoring challenge
	Introduce sensing variable:
	Extract what you know:
	Gleaning dependencies:
	There are several definitions of glean:
	Break out method object:

	Strategy
	Skeletonize methods:
	Find sequences:
	Extract to current class first:
	Extract small pieces:
	Be prepared to redo extractions:

	Chapter 23: How do I know that I'm not breaking anything • Joes Staal, 17 November 2011
	Hyperaware Editing
	Singe-Goal Editing
	Preserve Signatures
	Lean on the Compiler
	Pair Programming

	Chapter 24: We Feel Overwhelmed, It Isn't Going to Get Any Better • John Penney, 21 November 2011
	Chapter 25: Dependency-Breaking Techniques, part 1 • Matthew Jones, 28 November 2011
	Adapt Parameter
	Break Out Method Object
	Definition Completion
	Encapsulate Global References
	Expose Static Method
	Extract and Override Call
	Extract and Override Factory Method
	Extract and Override Getter

	Chapter 25, Dependency-Breaking Techniques, part 2 • David Pol, 5 December 2011
	Extract Implementer
	Extract Interface
	Introduce Instance Delegator
	Introduce Static Setter
	Link Substitution
	Parameterize Constructor
	Parameterize Method

	Chapter 25, Dependency-Breaking Techniques, part 3 • Ann Napier, 12 December 2011
	Primitivize Parameter
	Pull Up Feature
	Push Down Dependency
	Replace Function with Function Pointer
	Replace Global Reference with Getter
	Subclass and Override Method
	Supersede Instance Variable
	Template Redefinition
	Text Redefinition

	Appendix • Tim Barrass, 19 January 2011

